# RAG | Langchain # Langchain RAG:打造Markdown文件的结构化分割解决方案

【文章简介】
在信息技术的现代背景下,高效地处理和分析文本数据对于知识获取和决策支持至关重要。Markdown文件因其易读性和高效性,在文档编写和知识共享中占据了重要地位。然而,传统的文本处理方法往往忽视了Markdown的结构化特性,未能充分挖掘文本的深层含义和主题。

本文介绍了一种创新的结构化分割方法,利用Langchain技术,通过MarkdownHeaderTextSplitter工具,根据标题层级进行精确分割,同时保留文本的上下文和结构信息。这种方法特别适合处理报告、教程等结构化文档,有助于提升文本向量化(embedding)的效果。
正如Pinecone所指出的,当整个段落或文档被嵌入时,嵌入过程会同时考虑整体上下文和文本内部句子与短语之间的关系,从而产生更全面的向量表示,捕获文本的更广泛含义和主题。
此外,RecursiveCharacterTextSplitter工具适用于需要均匀文本块的自然语言处理任务,而UnstructuredMarkdownLoader则将Markdown文件转换为Langchain对象,通过mode="elements"选项,进一步增强了文本块的独立性和分析的灵活性。

这种方法不仅提高了文本分析的效率和准确性,而且通过优化embedding过程,显著增强了RAG(Retrieval-Augmented
Generation)效果,为Markdown文件的深入利用和知识管理开辟了新路径。

MarkDown

Markdown是一种轻量级标记语言,用于使用纯文本编辑器创建格式化文本。
优势:纯文本、有语义(用纯文本表示的语义)

使用MarkdownHeaderTextSplitter获取markdown结构

调用方法

%pip install -qU langchain-text-splitters

我们可以自己规定分割的chunksize、标题层级

标题层级分割

# 1 标题
## 1.1 标题
### 1.1.1 标题
#### 1.1.1.1 标题
1.1.1.1 内容

# 2 标题
2 内容
## 2.2 标题
2.2 内容
# 读取markdown内容
content_path= r"xxx.md"
with open(content_path, "r") as f:
    page_content = f.read()


from langchain_text_splitters import MarkdownHeaderTextSplitter

markdown_document = page_content

headers_to_split_on = [
    ("#", "Header 1"),
    ("##", "Header 2"),
    ("###", "Header 3"),
]

markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
md_header_splits = markdown_splitter.split_text(markdown_document)
for i, doc in enumerate(md_header_splits):
    print("-------------------------------------------------------")
    print(f"Document {i+1}:")
    print("Page content:")
    print(doc.page_content)
    print("Metadata:")
    for key, value in doc.metadata.items():
        print(f"{key}: {value}")
    print("\n")
-------------------------------------------------------
Document 1:
Page content:
#### 1.1.1.1 标题
1.1.1.1 内容
Metadata:
Header 1: 1 标题
Header 2: 1.1 标题
Header 3: 1.1.1 标题


-------------------------------------------------------
Document 2:
Page content:
2 内容
Metadata:
Header 1: 2 标题


-------------------------------------------------------
Document 3:
Page content:
2.2 内容
Metadata:
Header 1: 2 标题
Header 2: 2.2 标题

strip_headers = False 禁止剥离标题

markdown_splitter = MarkdownHeaderTextSplitter(
    headers_to_split_on=headers_to_split_on, strip_headers=False
)
-------------------------------------------------------
Document 1:
Page content:
# 1 标题  
## 1.1 标题  
### 1.1.1 标题
#### 1.1.1.1 标题
1.1.1.1 内容


-------------------------------------------------------
Document 2:
Page content:
# 2 标题
2 内容


-------------------------------------------------------
Document 3:
Page content:
## 2.2 标题
2.2 内容

对比剥离标题情况
strip_headers=False
image.png
strip_headers=True
image.png

适应各种文本分割器

# MD splits
markdown_splitter = MarkdownHeaderTextSplitter(
    headers_to_split_on=headers_to_split_on, strip_headers=False
)
md_header_splits = markdown_splitter.split_text(markdown_document)

# Char-level splits
from langchain_text_splitters import RecursiveCharacterTextSplitter

chunk_size = 250
chunk_overlap = 30
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=chunk_size, chunk_overlap=chunk_overlap
)

# Split
splits = text_splitter.split_documents(md_header_splits)
splits

【额外补充】markdown转为langchain对象 UnstructuredMarkdownLoader 方法 调用

# !pip install unstructured > /dev/null
from langchain_community.document_loaders import UnstructuredMarkdownLoader

markdown_path = "../../../../../README.md"
loader = UnstructuredMarkdownLoader(markdown_path)

data = loader.load()

data

[Document(page_content="ð\x9f¦\x9cï¸\x8fð\x9f”\x97 LangChain\n\nâ\x9a¡ Building applications with LLMs through composability â\x9a¡\n\nLooking for the JS/TS version? Check out LangChain.js.\n\nProduction Support: As you move your LangChains into production, we'd love to offer more comprehensive support.\nPlease fill out this form and we'll set up a dedicated support Slack channel.\n\nQuick Install\n\npip install langchain\nor\nconda install langchain -c conda-forge\n\nð\x9f¤” What is this?\n\nLarge language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.\n\nThis library aims to assist in the development of those types of applications. Common examples of these applications include:\n\nâ\x9d“ Question Answering over specific documents\n\nDocumentation\n\nEnd-to-end Example: Question Answering over Notion Database\n\nð\x9f’¬ Chatbots\n\nDocumentation\n\nEnd-to-end Example: Chat-LangChain\n\nð\x9f¤\x96 Agents\n\nDocumentation\n\nEnd-to-end Example: GPT+WolframAlpha\n\nð\x9f“\x96 Documentation\n\nPlease see here for full documentation on:\n\nGetting started (installation, setting up the environment, simple examples)\n\nHow-To examples (demos, integrations, helper functions)\n\nReference (full API docs)\n\nResources (high-level explanation of core concepts)\n\nð\x9f\x9a\x80 What can this help with?\n\nThere are six main areas that LangChain is designed to help with.\nThese are, in increasing order of complexity:\n\nð\x9f“\x83 LLMs and Prompts:\n\nThis includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.\n\nð\x9f”\x97 Chains:\n\nChains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.\n\nð\x9f“\x9a Data Augmented Generation:\n\nData Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.\n\nð\x9f¤\x96 Agents:\n\nAgents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.\n\nð\x9f§\xa0 Memory:\n\nMemory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.\n\nð\x9f§\x90 Evaluation:\n\n[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.\n\nFor more information on these concepts, please see our full documentation.\n\nð\x9f’\x81 Contributing\n\nAs an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.\n\nFor detailed information on how to contribute, see here.", metadata={'source': '../../../../../README.md'})]

Retain Elements

Unstructured为不同的文本块创建不同的“元素”。默认情况下,我们将这些联合收割机组合在一起,但您可以通过指定 mode="elements" 轻松地保持这种分离。

loader = UnstructuredMarkdownLoader(markdown_path, mode="elements")

data = loader.load()

data[0]
    Document(page_content='ð\x9f¦\x9cï¸\x8fð\x9f”\x97 LangChain', metadata={'source': '../../../../../README.md', 'page_number': 1, 'category': 'Title'})

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/550223.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

WIN7用上最新版Chrome

1.下载WIN10最新版Chrome的离线安装包 谷歌浏览器 Chrome 最新版离线安装包下载地址 v123.0.6312.123 - 每日自动更新 | 异次元软件 文件名称:123.0.6312.123_chrome_installer.exe。 123.0.6312.123_chrome_installer.exe 文件右键解压缩得到 chrome.7z&#x…

Elasticsearch:下载、启动和账号密码登录

因为我的电脑是 window,以下都是以 window 环境举例。 一、下载 Elasticsearch 是使用 java 开发的,且 7.8 版本的 ES 需要 JDK 版本 1.8 以上,安装前注意java环境的准备。 官网地址:https://www.elastic.co/cn/ 下载地址&#xf…

第十五届蓝桥杯题解-好数

题目大意&#xff1a;一个数的低位为奇数&#xff0c;次低位为偶数&#xff0c;以此类推的数成为好数&#xff0c;例如&#xff1a;1&#xff0c;3&#xff0c;5&#xff0c;7&#xff0c;9 给定一个n&#xff0c;求1-n所有好数的个数&#xff0c;n<1e7 思路&#xff1a;一…

Python 数学应用(四)

原文&#xff1a;zh.annas-archive.org/md5/123a7612a4e578f6816d36f968cfec22 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 第十一章&#xff1a;其他主题 在本章中&#xff0c;我们将讨论一些在本书前几章中没有涉及的主题。这些主题大多涉及不同的计算方式以及优…

Python也可以合并和拆分PDF,批量高效!

PDF是最方便的文档格式&#xff0c;可以在任何设备原样且无损的打开&#xff0c;但因为PDF不可编辑&#xff0c;所以很难去拆分合并。 知乎上也有人问&#xff0c;如何对PDF进行合并和拆分&#xff1f; 看很多回答推荐了各种PDF编辑器或者网站&#xff0c;确实方法比较多。 …

C++学习————第六天 (运算符重载 const成员 取地址)

这一篇我们来补齐上一天的 留下的三个默认成员函数 //上一天内容 &#xff1a; nullhttps://blog.csdn.net/island1314/article/details/137371086?spm1001.2014.3001.5502 1、重载 1.1 运算符重载 C为了增强代码的可读性引入了运算符重载&#xff0c;运算符重载是具有特殊…

AUTOCAD输出或打印PDF文件时,如何将图形居中且布满图纸?

AUTOCAD输出或打印PDF文件时,如何将图形居中且布满图纸? 如下图所示,我们打开一份DWG格式的图纸文件,然后点击上方的“打印“图标, 如下图所示, 打印机/绘图仪这里选择“DWG To PDF“; 图纸尺寸:这里以普通的A4纸为例进行说明; 打印比例选择“布满图纸“; 打印偏移…

uniapp 组件传值

uniapp 组件传值 父传子子传父 uniapp 组件传值 父传子 在uniapp中&#xff0c;组件传值主要通过props进行。以下是一个简单的例子&#xff1a; 首先&#xff0c;创建一个组件MyComponent.vue&#xff1a; <template><view><text>{{ message }}</tex…

计算机网络(六)应用层

应用层 基本概念 服务器端&#xff08;Server&#xff09;&#xff1a; 服务器是网络中提供服务的计算机或软件程序。服务器通常具有更高的性能、更大的存储空间和更高的带宽&#xff0c;用于提供各种服务&#xff0c;如文件存储、数据库管理、Web托管、电子邮件传递等。服务…

Redis 缓存预热、预热数据选取策略、缓存保温、性能边界

缓存预热 热点数据预热&#xff1a;根据业务分析或统计数据&#xff0c;确定热点数据&#xff08;经常被访问的数据&#xff09;&#xff0c;并将其提前加载到Redis缓存中。可以根据访问频率、访问量或其他业务指标来确定热点数据。定时预热&#xff1a;可以设置定时任务&…

住宅IP代理和机房IP代理之间的区别?

一、什么是数据中心/机房IP代理&#xff1f; 数据中心/机房IP代理是使用数据中心拥有并进行分配和管理的IP的代理&#xff0c;俗称机房IP代理。 二、数据中心/机房IP代理的特点 与住宅代理通过使用ISP拥有和分配的IP地址的设备路由请求的情况不同&#xff0c;数据中心代理利…

什么是线程?线程和进程谁更弔?

第一个参数是所创建进程的pid。 第二个是线程的属性。 第三个参数是返回值为void*&#xff0c;参数也为void*的函数指针。 第四个参数是给第三个参数的参数&#xff0c;也就是给给函数传参。 #include<iostream> #include<pthread.h> #include<unistd.h>…

8thWall vs. AR.js

对于熟悉 JavaScript、WebGL 和 HTML5 等 Web 技术的数字创作者来说&#xff0c;8th Wall 提供了功能丰富且强大的 AR 开发平台&#xff0c;尽管价格较高。 然而&#xff0c;新手开发人员和专注于基于标记的 AR 的开发人员可能会发现 AR.js 更易于使用且更经济实惠。 1、8th Wa…

利用redis和fastapi实现本地与平台策略进行交互

redis在pandas一文有详细使用方法(一文教会pandas-CSDN博客)&#xff0c;具体可视化软件有redisstudio等。它是一个由 Salvatore Sanfilippo 写的 key-value 存储系统&#xff0c;是跨平台的非关系型数据库。 Redis 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络…

看图找LOGO,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建生活场景下的商品商标LOGO检测识别系统

日常生活中&#xff0c;我们会看到眼花缭乱的各种各样的产品logo&#xff0c;但是往往却未必能认全&#xff0c;正因为有这个想法&#xff0c;这里我花费了过去近两周的时间采集和构建了包含50种商品商标logo的数据集&#xff0c;基于YOLOv8全系列的参数模型开发构建了对应的检…

02_JavaWeb中的Tomcat(详解)

文章目录 Tomcat1, 概述1.1 安装1.2 目录结构1.3 启动/停止 2, 资源部署2.1 直接部署: 主要和重要的方式2.2 虚拟映射: 重要2.2.1 方式一:2.2.1 方式二: 2.3 原理解析 3, Tomcat组件3.1 Connector3.2 Engine3.2.1 Host3.2.1.1 Context 4, 其它: 重要4.1 设置 Tomcat 1, 概述 w…

OSPF - 链路状态路由协议

IGP 外部网关路由协议&#xff1a; OSPF &#xff0c; IS-IS EGP 内部网关路由协议&#xff1a; BGP 协议算法&#xff1a; 距离矢量路由协议 链路状态路由协议 lsdb:链路状态数据库 - 存放lsa的地址 RIP&#xff1a;有方向的矢量&#xff0c;距离矢量路由协议&#xf…

通过Maven导入本地jar包

1.创建lib文件夹&#xff0c;把jar包放到文件夹里面 2.在pom里导入依赖 导入完成

政安晨:【深度学习神经网络基础】(九)—— 在深度学习神经网络反向传播训练中理解梯度

目录 简述 理解梯度 什么是梯度 计算梯度 政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 简述 在深度…

基于Zookeeper 简单实现分布式任务协调组件

一、什么是 Zookeeper ZooKeeper是一个分布式的&#xff0c;开放源码的分布式应用程序协调服务&#xff0c;是Google的Chubby一个开源的实现&#xff0c;是Hadoop和Hbase的重要组件。 它是一个为分布式应用提供一致性服务的软件&#xff0c;提供的功能包括&#xff1a;配置维…