Java核心知识点整理大全25-笔记

目录

25. Hadoop

25.1.1. 概念

25.1.2. HDFS

25.1.2.1. Client

25.1.2.2. NameNode

25.1.2.3. Secondary NameNode

25.1.2.4. DataNode

25.1.3. MapReduce

25.1.3.1. Client

25.1.3.2. JobTracker

25.1.3.3. TaskTracker

25.1.3.4. Task

25.1.3.5. Reduce Task 执行过程

25.1.4. Hadoop MapReduce 作业的生命周期

1.作业提交与初始化

2.任务调度与监控。

3.任务运行环境准备

4.任务执行

5.作业完成。

26. Spark

26.1.1. 概念

26.1.2. 核心架构

Spark Core

Spark SQL

Spark Streaming

Mllib

GraphX

26.1.3. 核心组件

Cluster Manager-制整个集群,监控 worker

Worker 节点-负责控制计算节点

Driver: 运行 Application 的 main()函数

26.1.4. SPARK 编程模型

26.1.5. SPARK 计算模型

26.1.6. SPARK 运行流程

26.1.7. SPARK RDD 流程

1. 创建 RDD 对象

26.1.8. SPARK RDD


25. Hadoop

25.1.1. 概念

就是一个大数据解决方案。它提供了一套分布式系统基础架构。 核心内容包含 hdfs 和 mapreduce。hadoop2.0 以后引入 yarn. hdfs 是提供数据存储的,mapreduce 是方便数据计算的。

1. hdfs 又对应 namenode 和 datanode. namenode 负责保存元数据的基本信息, datanode 直接存放数据本身;

2. mapreduce 对应 jobtracker 和 tasktracker. jobtracker 负责分发任务,tasktracker 负 责执行具体任务;

3. 对应到 master/slave 架构,namenode 和 jobtracker 就应该对应到 master, datanode 和 tasktracker 就应该对应到 slave.

25.1.2. HDFS

25.1.2.1. Client

Client(代表用 户) 通过与 NameNode 和 DataNode 交互访问 HDFS 中 的文件。 Client 提供 了一个类似 POSIX 的文件系统接口供用户调用。

25.1.2.2. NameNode

整个 Hadoop 集群中只有一个 NameNode。 它是整个系统的“ 总管”, 负责管理 HDFS 的目 录树和相关的文件元数据信息。 这些信息是以“ fsimage”( HDFS 元数据镜像文件)和 “ editlog”(HDFS 文件改动日志)两个文件形式存放在本地磁盘,当 HDFS 重启时重新构造出 来的。此外, NameNode 还负责监控各个 DataNode 的健康状态, 一旦发现某个 DataNode 宕 掉,则将该 DataNode 移出 HDFS 并重新备份其上面的数据。

25.1.2.3. Secondary NameNode

Secondary NameNode 最重要的任务并不是为 NameNode 元数据进行热备份, 而是定期合并 fsimage 和 edits 日志, 并传输给 NameNode。 这里需要注意的是,为了减小 NameNode 压 力, NameNode 自己并不会合并 fsimage 和 edits, 并将文件存储到磁盘上, 而是交由 Secondary NameNode 完成。

25.1.2.4. DataNode

一般而言, 每个 Slave 节点上安装一个 DataNode, 它负责实际的数据存储, 并将数据信息定期 汇报给 NameNode。 DataNode 以固定大小的 block 为基本单位组织文件内容, 默认情况下 block 大小为 64MB。 当用户上传一个大的文件到 HDFS 上时, 该文件会被切分成若干个 block, 分别存储到不同的 DataNode ; 同时,为了保证数据可靠, 会将同一个 block 以流水线方式写到若干个(默认是 3,该参数可配置)不同的 DataNode 上。 这种文件切割后存储的过程是对用户 透明的。

25.1.3. MapReduce

同 HDFS 一样,Hadoop MapReduce 也采用了 Master/Slave(M/S)架构,具体如图所示。它 主要由以下几个组件组成:Client、JobTracker、TaskTracker 和 Task。 下面分别对这几个组件 进行介绍

25.1.3.1. Client

用户编写的 MapReduce 程序通过 Client 提交到 JobTracker 端; 同时, 用户可通过 Client 提 供的一些接口查看作业运行状态。 在 Hadoop 内部用“作业”(Job) 表示 MapReduce 程序。 一个 MapReduce 程序可对应若干个作业,而每个作业会被分解成若干个 Map/Reduce 任务 (Task)。

25.1.3.2. JobTracker

JobTracker 主要负责资源监控和作业调度。JobTracker 监控所有 TaskTracker 与作业的健康状况, 一旦发现失败情况后,其会将相应的任务转移到其他节点;同时 JobTracker 会跟踪任务的执行进 度、资源使用量等信息,并将这些信息告诉任务调度器,而调度器会在资源出现空闲时,选择合 适的任务使用这些资源。在 Hadoop 中,任务调度器是一个可插拔的模块,用户可以根据自己的 需要设计相应的调度器。

25.1.3.3. TaskTracker

TaskTracker 会周期性地通过 Heartbeat 将本节点上资源的使用情况和任务的运行进度汇报给 JobTracker, 同时接收 JobTracker 发送过来的命令并执行相应的操作(如启动新任务、 杀死任 务等)。TaskTracker 使用“slot” 等量划分本节点上的资源量。“slot” 代表计算资源(CPU、 内存等)。一个 Task 获取到一个 slot 后才有机会运行,而 Hadoop 调度器的作用就是将各个 TaskTracker 上的空闲 slot 分配给 Task 使用。 slot 分为 Map slot 和 Reduce slot 两种,分别供 MapTask 和 Reduce Task 使用。 TaskTracker 通过 slot 数目(可配置参数)限定 Task 的并发 度.

25.1.3.4. Task

Task 分为 Map Task 和 Reduce Task 两种, 均由 TaskTracker 启动。 HDFS 以固定大小的 block 为基本单位存储数据, 而对于 MapReduce 而言, 其处理单位是 split。split 与 block 的对应关 系如图所示。 split 是一个逻辑概念, 它只包含一些元数据信息, 比如数据起始位置、数据长度、 数据所在节点等。它的划分方法完全由用户自己决定。 但需要注意的是,split 的多少决定了 Map Task 的数目 ,因为每个 split 会交由一个 Map Task 处理。

Map Task 执行过程如图所示。 由该图可知,Map Task 先将对应的 split 迭代解析成一个个 key/value 对,依次调用用户自定义的 map() 函数进行处理,最终将临时结果存放到本地磁盘上, 其中临时数据被分成若干个 partition,每个 partition 将被一个 Reduce Task 处理。

25.1.3.5. Reduce Task 执行过程

该过程分为三个阶段

1. 从远程节点上读取 MapTask 中间结果(称为“Shuffle 阶段”);

2. 按照 key 对 key/value 对进行排序(称为“ Sort 阶段”);

3. 依次读取,调用用户自定义的 reduce() 函数处理,并将最终结果存到 HDFS

25.1.4. Hadoop MapReduce 作业的生命周期

1.作业提交与初始化

1. 用户提交作业后, 首先由 JobClient 实例将作业相关信息, 比如将程序 jar 包、作业配置文 件、 分片元信息文件等上传到分布式文件系统( 一般为 HDFS)上,其中,分片元信息文件 记录了每个输入分片的逻辑位置信息。 然后 JobClient 通过 RPC 通知 JobTracker。 JobTracker 收到新作业提交请求后, 由 作业调度模块对作业进行初始化:为作业创建一个 JobInProgress 对象以跟踪作业运行状况, 而 JobInProgress 则会为每个 Task 创建一个 TaskInProgress 对象以跟踪每个任务的运行状态, TaskInProgress 可能需要管理多个 “ Task 运行尝试”( 称为“ Task Attempt”)。

2.任务调度与监控。

2. 前面提到,任务调度和监控的功能均由 JobTracker 完成。TaskTracker 周期性地通过 Heartbeat 向 JobTracker 汇报本节点的资源使用 情况, 一旦出 现空闲资源, JobTracker 会按照一定的策略选择一个合适的任务使用该空闲资源, 这由任务调度器完成。 任务调度器 是一个可插拔的独立模块, 且为双层架构, 即首先选择作业, 然后从该作业中选择任务, 其 中,选择任务时需要重点考虑数据本地性。 此外,JobTracker 跟踪作业的整个运行过程,并 为作业的成功运行提供全方位的保障。 首先, 当 TaskTracker 或者 Task 失败时, 转移计算 任务 ; 其次, 当某个 Task 执行进度远落后于同一作业的其他 Task 时,为之启动一个相同 Task, 并选取计算快的 Task 结果作为最终结果。

3.任务运行环境准备

3. 运行环境准备包括 JVM 启动和资源隔 离, 均由 TaskTracker 实现。 TaskTracker 为每个 Task 启动一个独立的 JVM 以避免不同 Task 在运行过程中相互影响 ; 同时,TaskTracker 使 用了操作系统进程实现资源隔离以防止 Task 滥用资源。

4.任务执行

4. TaskTracker 为 Task 准备好运行环境后, 便会启动 Task。 在运行过程中, 每个 Task 的最 新进度首先由 Task 通过 RPC 汇报给 TaskTracker, 再由 TaskTracker 汇报给 JobTracker。

5.作业完成。

5. 待所有 Task 执行完毕后, 整个作业执行成功。


26. Spark

26.1.1. 概念

Spark 提供了一个全面、统一的框架用于管理各种有着不同性质(文本数据、图表数据等)的数据 集和数据源(批量数据或实时的流数据)的大数据处理的需求。

26.1.2. 核心架构

Spark Core

包含 Spark 的基本功能;尤其是定义 RDD 的 API、操作以及这两者上的动作。其他 Spark 的库都 是构建在 RDD 和 Spark Core 之上的

Spark SQL

提供通过 Apache Hive 的 SQL 变体 Hive 查询语言(HiveQL)与 Spark 进行交互的 API。每个 数据库表被当做一个 RDD,Spark SQL 查询被转换为 Spark 操作。

Spark Streaming

对实时数据流进行处理和控制。Spark Streaming 允许程序能够像普通 RDD 一样处理实时数据

Mllib

一个常用机器学习算法库,算法被实现为对 RDD 的 Spark 操作。这个库包含可扩展的学习算法, 比如分类、回归等需要对大量数据集进行迭代的操作。

GraphX

控制图、并行图操作和计算的一组算法和工具的集合。GraphX 扩展了 RDD API,包含控制图、 创建子图、访问路径上所有顶点的操作

26.1.3. 核心组件

Cluster Manager-制整个集群,监控 worker

在 standalone 模式中即为 Master 主节点,控制整个集群,监控 worker。在 YARN 模式中为资 源管理器

Worker 节点-负责控制计算节点

从节点,负责控制计算节点,启动 Executor 或者 Driver。

Driver: 运行 Application 的 main()函数

Executor:执行器,是为某个 Application 运行在 worker node 上的一个进程

26.1.4. SPARK 编程模型

Spark 应用程序从编写到提交、执行、输出的整个过程如图所示,图中描述的步骤如下:

1. 用户使用 SparkContext 提供的 API(常用的有 textFile、sequenceFile、runJob、stop 等) 编写 Driver application 程序。此外 SQLContext、HiveContext 及 StreamingContext 对 SparkContext 进行封装,并提供了 SQL、Hive 及流式计算相关的 API。

2. 使用SparkContext提交的用户应用程序,首先会使用BlockManager和BroadcastManager 将任务的 Hadoop 配置进行广播。然后由 DAGScheduler 将任务转换为 RDD 并组织成 DAG, DAG 还将被划分为不同的 Stage。最后由 TaskScheduler 借助 ActorSystem 将任务提交给 集群管理器(Cluster Manager)。

3. 集群管理器(ClusterManager)给任务分配资源,即将具体任务分配到Worker上,Worker 创建 Executor 来处理任务的运行。Standalone、YARN、Mesos、EC2 等都可以作为 Spark 的集群管理器。

26.1.5. SPARK 计算模型

RDD 可以看做是对各种数据计算模型的统一抽象,Spark 的计算过程主要是 RDD 的迭代计算过 程。RDD 的迭代计算过程非常类似于管道。分区数量取决于 partition 数量的设定,每个分区的数 据只会在一个 Task 中计算。所有分区可以在多个机器节点的 Executor 上并行执行。

26.1.6. SPARK 运行流程

1. 构建 Spark Application 的运行环境,启动 SparkContext

2. SparkContext 向资源管理器(可以是 Standalone,Mesos,Yarn)申请运行 Executor 资源, 并启动 StandaloneExecutorbackend,

3. Executor 向 SparkContext 申请 Task

4. SparkContext 将应用程序分发给 Executor

5. SparkContext 构建成 DAG 图,将 DAG 图分解成 Stage、将 Taskset 发送给 Task Scheduler, 最后由 Task Scheduler 将 Task 发送给 Executor 运行

6. Task 在 Executor 上运行,运行完释放所有资源

26.1.7. SPARK RDD 流程

1. 创建 RDD 对象

2. DAGScheduler 模块介入运算,计算 RDD 之间的依赖关系,RDD 之间的依赖关系就形成了 DAG

3. 每一个 Job 被分为多个 Stage。划分 Stage 的一个主要依据是当前计算因子的输入是否是确 定的,如果是则将其分在同一个 Stage,避免多个 Stage 之间的消息传递开销

26.1.8. SPARK RDD

(1)RDD 的创建方式

1)从 Hadoop 文件系统(或与Hadoop兼容的其他持久化存储系统,如Hive、Cassandra、 HBase)输入(例如 HDFS)创建。

2)从父 RDD 转换得到新 RDD。

3)通过 parallelize 或 makeRDD 将单机数据创建为分布式 RDD。

(2)RDD 的两种操作算子(转换(Transformation)与行动(Action))

对于 RDD 可以有两种操作算子:转换(Transformation)与行动(Action)。

1)转换(Transformation):Transformation操作是延迟计算的,也就是说从一个RDD转 换生成另一个 RDD 的转换操作不是马上执行,需要等到有 Action 操作的时候才会真正触 发运算。

2)行动(Action):Action 算子会触发 Spark 提交作业(Job),并将数据输出 Spark 系统。


Java核心知识点整理大全24-笔记-CSDN博客

往期快速传送门👆(在文章最后):

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/207231.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

理解Gamma传递函数

对于任何认真从事色彩工作或电影和电视母带处理的人来说,掌握Gamma编码是一项重要的知识,但它也可能是最令人困惑的主题之一,因为我们人类的视力与大多数电子设备的工作方式截然不同。 Gamma编码和传递函数的全部工作都是基于向我们的人眼提供…

【深度学习】gan网络原理生成对抗网络

【深度学习】gan网络原理生成对抗网络 GAN的基本思想源自博弈论你的二人零和博弈,由一个生成器和一个判别器构成,通过对抗学习的方式训练,目的是估测数据样本的潜在分布并生成新的数据样本。 1.下载数据并对数据进行规范 transform tran…

用Python进行gRPC接口测试(一)

前言 gRPC 是一个高性能、通用的开源RPC框架,其由 Google 主要面向移动应用开发并基于HTTP/2 协议标准而设计,基于 ProtoBuf(Protocol Buffers) 序列化协议开发,且支持众多开发语言。 自gRPC推出以来,已经广泛应用于各种服务之中…

UI自动化测试工具有哪些优势?

UI自动化测试工具通过提高测试效率、覆盖率,减少测试时间和成本,以及支持持续集成等方式,为软件开发团队提供了一系列重要的优势,有助于提升软件质量和开发效率。 自动化执行:UI自动化测试工具可以模拟用户与应用程序的…

ubuntu22下使用nvidia 2080T显卡部署pytorch

1.直接到NVIDA官网下载相应的驱动,然后安装官方驱动 | NVIDIA 2.下载相应版本cuda,并安装,安装时不安装驱动 3.conda install pytorch2.1.0 torchvision0.16.0 torchaudio2.1.0 pytorch-cuda12.1 -c pytorch -c nvidia 安装pytorch。 安装…

Qt应用开发--国产工业开发板全志T113-i的部署教程

Qt在工业上的使用场景包括工业自动化、嵌入式系统、汽车行业、航空航天、医疗设备、制造业和物联网应用。Qt被用来开发工业设备的用户界面、控制系统、嵌入式应用和其他工业应用,因其跨平台性和丰富的功能而备受青睐。 Qt能够为工业领域带来什么好处: -…

scratch《贪吃蛇》改编版——设计方案

一、设计思路 设计想法来自《贪吃蛇》游戏改编。《贪吃蛇》游戏的背景源自古老的瑞典神话,讲述一条巨蛇在世间蔓延,吞噬一切的传说。游戏的玩法很简单,玩家通过上下左右键控制蛇的方向,使其在地图上移动并吞噬食物,随…

Android 12 及以上授权精确位置和模糊位置

请求位置信息权限 为了保护用户隐私,使用位置信息服务的应用必须请求位置权限。 请求位置权限时,请遵循与请求任何其他运行时权限相同的最佳做法。请求位置权限时的一个重要区别在于,系统中包含与位置相关的多项权限。具体请求哪项权限以及…

创新药集采中选后是否还需进行学术营销推广模式?

药品集采中选给药企带来了大幅降价和以价换量的趋势,同时也成为药企争夺的关键领域。对于是否继续进行推广活动,存在不同的观点和认知。 ▼需要还是不需要? 一些人认为集采后不再需要推广,因为药企无法承担高昂的销售费用&#x…

11.29 知识回顾(视图层、模板层)

一、视图层 1.1 响应对象 响应---》本质都是 HttpResponse -HttpResponse---》字符串 -render----》放个模板---》模板渲染是在后端完成 -js代码是在客户端浏览器里执行的 -模板语法是在后端执行的 -redirect----》重定向 -字符串参数不是…

Java实现socket编程案例

以下是一个基本的Java socket编程案例: 服务端代码: import java.net.*; import java.io.*;public class Server {public static void main(String[] args) throws IOException {ServerSocket serverSocket null;try {serverSocket new ServerSocket…

深度学习今年来经典模型优缺点总结,包括卷积、循环卷积、Transformer、LSTM、GANs等

文章目录 1、卷积神经网络(Convolutional Neural Networks,CNN)1.1 优点1.2 缺点1.3 应用场景1.4 网络图 2、循环神经网络(Recurrent Neural Networks,RNNs)2.1 优点2.2 缺点2.3 应用场景2.4 网络图 3、长短…

生产制造中4种导致产品成本、库存核算差错的问题!(化工/化妆品/生物制剂/混凝土等行业ODOO)

在化工/化妆品/生物制剂/混凝土等行业,因为其生产物料及产成品大都以液体(或散颗粒)形态为主,多以重量为计数方式;且液体(或散颗粒)相较于固体的较大区别就是产品计数上变数较大,固体…

什么是企业资金

我从两个方面来诠释企业资金管理: 1、企业资金管理是什么? 2、企业资金管理包括什么? 一、企业资金管理是什么? 众所周知,每个企业都有对应的财务部门,专门负责管理企业的“钱”,和企业的“帐…

企业软件手机app定制开发趋势|小程序网站搭建

企业软件手机app定制开发趋势|小程序网站搭建 随着移动互联网的快速发展和企业数字化转型的加速,企业软件手机App定制开发正成为一个新的趋势。这种趋势主要是由于企业对于手机App的需求增长以及现有的通用应用不能满足企业特定需求的情况下而产生的。 1.企业软件手…

【数据结构】—AVL树(C++实现)

🎬慕斯主页:修仙—别有洞天 💜本文前置知识: 搜索二叉树 ♈️今日夜电波:Letter Song—ヲタみん 1:36━━━━━━️💟──────── 5:35 …

Ubuntu 20.04 for NVIDIA V100 GPU安装手册

安装Ubuntu 20.04.3 LTS版本 image.png 安装Ubuntu 20.04按照安装提示,仔细选择每一项,基本默认即可。 系统中查看GPU信息 系统安装完成之后,进入系统,使用lspci 命令查询一下GPU是否存在、型号信息是什么。 bpangbobpang:\~$…

C语言中一些有关字符串的常见函数的使用及模拟实现(2)

在编程的过程中,我们经常要处理字符和字符串,为了⽅便操作字符和字符串,C语⾔标准库中提供了\n⼀系列库函数,接下来我们就学习⼀下这些函数。 在上一篇博客中已经讲解了strlen,strcpy,strcmp,st…

XXL-Job详解(二):安装部署

目录 前言环境下载项目调度中心部署执行器部署 前言 看该文章之前,最好看一下之前的文章,比较方便我们理解 XXL-Job详解(一):组件架构 环境 Maven3 Jdk1.8 Mysql5.7 下载项目 源码仓库地址链接: https://github.…

el-drawer抽屉组件弹窗遮挡问题解决

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 1、根据需要,需要在下面窗口里弹出抽屉组件,但出现遮挡问题,如下&…