智能优化算法应用:基于帝国主义竞争算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于帝国主义竞争算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于帝国主义竞争算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.帝国主义竞争算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用帝国主义竞争算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.帝国主义竞争算法

帝国主义竞争算法原理请参考:https://blog.csdn.net/u011835903/article/details/108517210
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

帝国主义竞争算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明帝国主义竞争算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/202482.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

运维知识点-PostgreSql

PostgreSql 下载安装地址安装组件数据目录设置superuser密码 端口安装语言安装完成,是否安装Stack Builder 下载 https://www.postgresql.org/download/windows/ https://get.enterprisedb.com/postgresql/postgresql-13.7-1-windows-x64.exe 我下载的 13.7 安装…

【MySQL数据库】SQL查询语句总结

目录 一、查询数据 1.1 基本查询语句 1.2 表单查询 1.3 WHERE子句 1.3.1 IN关键字查询 1.3.2 Between查询范围 1.3.3 Like匹配查询 1.3.4 AND多条件查询(等同于&&) 1.3.5 OR多条件查询(等同于||) 1.3.6 LIMIT子句 1.3.7 对…

基于Java SSM框架实现母婴儿用品网站系统项目【项目源码+论文说明】

基于java的SSM框架实现母婴儿用品网站系统演示 摘要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 母婴用品网站,主要的模块包括管理员;主页、个人中心、用户管理、商品分…

架构图是什么,该怎么制作?

架构图是指可视化展示软件、系统、应用程序、网络等各种体系结构的一类图表或图形,它能够形象地展示体系结构中各个组成部分和它们之间的关系。 架构图的类型 架构图的种类比较多,逐一列举不太合适,这里只列举一些常见的架构图类型&#…

Oracle E-Business Suite软件 任意文件上传漏洞(CVE-2022-21587)

0x01 产品简介 Oracle E-Business Suite(电子商务套件)是美国甲骨文(Oracle)公司的一套全面集成式的全球业务管理软件。该软件提供了客户关系管理、服务管理、财务管理等功能。 0x02 漏洞概述 Oracle E-Business Suite 的 Oracle…

LeetCode刷题---斐波那契数列模型

顾得泉:个人主页 个人专栏:《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂,年薪百万! 一、第N个泰波那契数 题目链接:1137. 第 N 个泰波那契数 题目描述 泰波那契序列Tn定义如下: T00,T11,T2 1,且在n&g…

2023.11.30 homework

兴趣最重要了,没兴趣不喜欢勉强带来的苦楚,并不能促使变好变优秀。 虽然我们的社会环境依旧很残酷,各种各样的硬性要求。

Docker + Jenkins + Nginx实现前端自动化部署

目录 前言一、前期准备工作1、示例环境2、安装docker3、安装Docker Compose4、安装Git5、安装Nginx和Jenkinsnginx.confdocker-compose.yml 6、启动环境7、验证Nginx8、验证Jenkins 二、Jenkins 自动化部署配置1、设置中文2、安装Publish Over SSH、NodeJS(1&#x…

PC端数据列表有头像显示头像,没有头像显示名字的第一个字

PC端数据列表有头像显示头像&#xff0c;没有头像显示名字的第一个字 .charAt(0) 是 JavaScript 字符串对象的方法&#xff0c;用于获取字符串的第一个字符。 字符串中的字符位置是从 0 开始的&#xff0c;所以.charAt(0) 就表示获取字符串的第一个字符。 <el-table ref&qu…

Android Studio Giraffe-2022.3.1-Patch-3安装注意事项

准备工作&#xff1a; android studio下载地址&#xff1a;https://developer.android.google.cn/studio/releases?hlzh-cn gradle下载地址&#xff1a;https://services.gradle.org/distributions/ 比较稳定的网络环境&#xff08;比较android studio相关的依赖需要从谷歌那边…

PlantUML语法(全)及使用教程-类图

目录 1. 类图1.1、什么是类图1.2、元素声明1.3、类之间的关系1.4、关系上的标签1.5、在元素名称和关系标签中使用非字母1.6、添加方法 1. 类图 类图的设计语法与编程语言的传统语法相似。这种相似性为开发人员提供了一个熟悉的环境&#xff0c;从而使创建图表的过程更简单、更直…

智慧公厕为城市智慧管理提供强力有的数据支持

在当今科技飞速发展的时代&#xff0c;城市管理正面临着前所未有的挑战与机遇。而在这个城市发展的脚步日新月异的同时&#xff0c;一项看似不起眼的技术却正在默默地为城市的智慧管理提供着强有力的支持——那就是智慧公厕。这些不起眼的公共设施不仅仅是人们日常生活的一部分…

PHP+ajax+layui实现双重列表的动态绑定

需求&#xff1a;商户下面有若干个门店&#xff0c;每个门店都需要绑定上收款账户 方案一&#xff1a;每个门店下面添加页面&#xff0c;可以选择账户去绑定。&#xff08;难度&#xff1a;简单&#xff09; 方案二&#xff1a;从商户进入&#xff0c;可以自由选择门店&#…

【网络奇缘】- 计算机网络|分层结构|深入学习ISO模型

&#x1f308;个人主页: Aileen_0v0&#x1f525;系列专栏: 一见倾心,再见倾城 --- 计算机网络~&#x1f4ab;个人格言:"没有罗马,那就自己创造罗马~" 回顾链接&#xff1a;http://t.csdnimg.cn/nRRzR 这篇文章是关于深入学习OSI模型七层结构&#xff0c; “书山…

高项备考葵花宝典-项目范围管理输入、输出、工具和技术

项目范围管理包括确保项目“做”且“只做”所需的全部工作&#xff08;即不能少做&#xff0c;也不能多做&#xff0c;如果多做&#xff0c;就要消耗团队额外的时间和资源&#xff0c;并且无法被认可&#xff09;&#xff0c;以成功完成项目。项目范围管理主要在于定义和控制哪…

vue3跟vue2的区别?

​&#x1f308;个人主页&#xff1a;前端青山 &#x1f525;系列专栏&#xff1a;Vue篇 &#x1f516;人终将被年少不可得之物困其一生 依旧青山,本期给大家带来vue篇专栏内容:vue3和vue2的区别 目录 一、Vue3介绍 哪些变化 速度更快 体积更小 更易维护 compositon Api …

SparkSQL远程调试(IDEA)

启动Intellij IDEA&#xff0c;打开spark源码项目&#xff0c;配置远程调试 Run->Edit Configuration 启动远程spark-sql spark-sql --verbose --driver-java-options "-Xdebug -Xrunjdwp:transportdt_socket,servery,suspendy,address5005"运行远程调试&#xf…

详解—[C++ 数据结构]—AVL树

目录 一.AVL树的概念 二、AVL树节点的定义 三、AVL树的插入 3.1插入方法 四、AVL树的旋转 1. 新节点插入较高左子树的左侧---左左&#xff1a;右单旋 2. 新节点插入较高右子树的右侧---右右&#xff1a;左单旋 3.新节点插入较高左子树的右侧---左右&#xff1a;先左单旋…

论文笔记:Confidential Assets

Confidential Assets 描述了一种称为“保密交易”的方案&#xff0c;该方案模糊了所有UTXO的金额&#xff0c;同时保持了不创建或销毁硬币的公共可验证性。进一步将此方案扩展到“保密资产”&#xff0c;一种单一的基于区块链的分类帐可以跟踪多种资产类型的方案。将保密交易扩…

1.3 排序算法

1.1 冒泡排序 public class BubbleSort {public static void main(String[] args) {int[] arr {133,322,13,444,54,621,174,18,19,2};System.out.println(Arrays.toString(arr));BubSort(arr);System.out.println(Arrays.toString(arr));}//冒泡排序public static void BubSo…