使用Statsmodel进行假设检验和线性回归

如果你使用 Python 处理数据,你可能听说过 statsmodel 库。Statsmodels 是一个 Python 模块,它提供各种统计模型和函数来探索、分析和可视化数据。该库广泛用于学术研究、金融和数据科学。在本文中,我们将介绍 statsmodel 库的基础知识、如何使用它以及它的好处。

什么是 Statsmodel 库?

Statsmodels 是一个 Python 模块,它提供各种统计模型和函数来探索、分析和可视化数据。它是一个构建在 NumPy、SciPy 和 Pandas 库之上的开源库。它广泛应用于学术研究、金融和数据科学。

Statsmodels 有很多特性,包括:

  • 线性回归模型
  • 广义线性模型
  • 时间序列分析
  • 多元统计
  • 非参数方法
  • 稳健的统计方法
  • 可视化工具

安装 Statsmodel 库

statsmodel 库的安装很简单。

 pip install statsmodels

此命令将安装最新版本的 statsmodel 库。

加载数据

在开始使用 statsmodel 库之前,我们需要加载数据,这使用 pandas 加载数据:

 import pandas as pd
 
 df = pd.read_csv('data.csv')

在从名为“data.csv”的 CSV 文件中读取数据。可以将文件名替换为其他需要的数据文件名。

使用 Statsmodel 探索和分析数据

我们已经加载了数据,现在可以开始使用 statsmodel 探索和分析它。我们将在本节中涵盖三个主要主题:描述性统计、数据可视化和假设检验。

1、描述性统计

描述性统计有助于我们了解数据的基本特征。我们可以使用 statsmodel 库中的 describe() 函数来获取描述性统计数据:

 import statsmodels.api as sm
 
 print(data.describe())

describe() 函数返回数据的综述、平均值、标准差、最小值、最大值和四分位数。

2、数据可视化

数据可视化是数据分析的重要组成部分。我们可以直接使用matplotlab来进行可视化:

 import matplotlib.pyplot as plt
 import seaborn as sns
 
 sns.scatterplot(data=data, x='X', y='Y')
 plt.xlabel('X')
 plt.ylabel('Y')
 plt.show()

3、假设检验

假设检验是一种检验假设是否成立的统计方法。在 statsmodel 中,我们可以使用 t 检验和 p-value 进行假设检验。

t检验是一种统计方法,用于比较两组数据的均值。它告诉我们两组均值之间的差异是否具有统计显着性。换句话说,它帮助我们确定观察到的两组之间的差异是否可能是偶然的,或者它是否是一个重要的真正差异。t检验是科学研究中常用的一种比较两组数据的比较简单直接的方法。

p-value是统计假设检验中针对原假设的证据强度的度量。它告诉我们在原假设为真的情况下观察到的结果比我们得到的结果更极端的概率。简而言之,它可以帮助我们确定仅靠偶然获得结果的可能性。

如果 p 值非常小(通常小于 0.05),我们可以拒绝零假设并得出观察到的效果具有统计显着性的结论。p值是统计分析中的一个重要概念,在科学研究中被广泛使用。

假设我们要测试线性回归模型中“X”变量的系数是否具有统计显着性。我们可以使用 t 检验和 p 值来检验这个假设:

 import statsmodels.formula.api as smf
 
 model = smf.ols('Y ~ X', data=data).fit()
 print(model.summary())

summary() 函数将返回一个表格,其中包含线性回归模型的系数、标准误差、t 值和 p 值。

我们可以使用 p 值来检验“X”变量的系数是否具有统计显着性。如果 p 值小于 0.05,我们可以拒绝原假设并得出系数具有统计显着性的结论。

使用 Statsmodel 进行简单线性回归

上面是statsmodel 库的基础知识,让我们更深入地研究线性回归模型。线性回归是一种对因变量与一个或多个自变量之间的关系进行建模的统计方法。我们将介绍使用 statsmodel 的简单线性回归。

上面的代码是对“X”和“Y”变量之间的关系进行建模。我们可以使用 Statsmodel 进行多元线性回归

假设要对“Y”变量与两个自变量“X1”和“X2”之间的关系建模,那么代码如下:

 model = smf.ols('Y ~ X1 + X2', data=data).fit()

这里建立了一个线性回归模型,其中“Y”是因变量,“X1”和“X2”是自变量。

总结

本文简单介绍了 statsmodel 库的基础知识以及如何使用它进行统计分析。涵盖了数据操作、汇总统计、假设检验、线性回归模型以及可视化。Statsmodel 是一个强大的库,可以帮助我们轻松地进行复杂的统计分析。广泛应用于金融、经济、社会科学、工程等各个行业。

https://avoid.overfit.cn/post/7e442e350ab340d59d8b8143e4b8c6f1

作者:panData

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/15892.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

(七)ArcCatalog应用基础——图层操作与数据输出

(七)ArcCatalog应用基础——图层操作与数据输出 目录 (七)ArcCatalog应用基础——图层操作与数据输出 1.地图与图层操作1.1创建图层1.2设置文件特征1.3保存独立的图层文件 2.地理数据输出2.1输出为Shapefile2.2输出为Coverage2.3属…

笔记本电脑没有声音了怎么恢复

笔记本电脑 在使用的过程中,突然没有声音的话,对于人们来说会很麻烦。那么笔记本电脑没有声音了怎么恢复呢?下面小编为大家整理了笔记本电脑没有声音的恢复方法,一起来看看吧。 方法/步骤: 方法一:网络适配器检查音频…

UE5实现建筑剖切效果

文章目录 1.实现目标2.实现过程2.1 材质参数集2.2 材质遮罩函数2.3 更新Box3.参考资料1.实现目标 基于BoxMask材质节点,在UE5中实现建筑物的剖切效果,GIF动图如下: 2.实现过程 实现原理与之前“BoxMask实现建筑生长效果”的原理相同,都是基于BoxMask材质节点实现。 具体实…

操作系统之内存管理

连续分配 一、单一连续 直接为要运行的进程分配一个内存,只适合单任务,只能用于单对象、单任务,内存被分配为系统区和用户区,系统区在低地址,用户区是一个用户独享 二、等分分区 由于分配一个内存只能执行单任务&a…

MongoDB【常用命令】

目录 1:基本常用命令 1.1:演示案例 1.2:数据库操作 1.2.1:选择和创建数据库,查看当前正在使用的数据库命令 1.2.2:数据库的删除 1.3:集合操作 1.3.1:集合的显式创建&#xff0…

C++ srand()和rand()用法

参考C rand 与 srand 的用法 计算机的随机数都是由伪随机数,即是由小M多项式序列生成的,其中产生每个小序列都有一个初始值,即随机种子。(注意: 小M多项式序列的周期是65535,即每次利用一个随机种子生成的随…

【机器学习】HOG+SVM实现行人检测

文章目录 一、准备工作1. 下载数据集2. 解压数据集 二、HOG特征简介1. 梯度(Gradient)2. 格子(Cell)3. 块归一化(Block Normalization)4. HOG特征(HOG Feature)5. 使用skimage.featu…

docker容器原理及简单且详细的使用

docker原理简单介绍 docker是一种虚拟化容器技术。 虚拟化:早期为了节约成本和学习只有在宿主机中基于 kvm(基于内核的虚拟机)等技术虚拟出来完整的操作系统,而这个完整的操作系统会大量的占用宿主机的硬件资源,当创建…

Oracle LiveLabs实验:DB Security - Data Masking and Subsetting (DMS)

概述 本实验介绍了适用于 Enterprise Manager 的 Oracle 数据屏蔽和子集 (DMS) 包的各种特性和功能。 它使用户有机会学习如何配置这些功能,以便在非生产环境中保护他们的敏感数据。 此实验申请地址在这里,时间为60分钟。 本实验也是DB Security Adva…

无惧黑暗强光,纯视觉导航也能全天候作业

对于一台激光导航扫地机器人而言,全天候作业并非难事,那么纯视觉导航扫地机器人能做到吗? 无论对于人,还是机器人,光线环境的变化对“眼睛”的影响都是致命的。由于视觉传感器对于光线十分敏感,在家庭场景…

linux入门---软硬链接

软链接 使用指令ln -s 被链接的文件 生成的软链接文件 便可以创建软连接文件,ln是link的简写表明当前要创建链接文件,s是soft的简写表明当前创建的链接文件为软链接文件,然后加上被链接的文件,最后写上生成的链接文件的文件名比如…

使用 ArcGIS Pro 进行土地利用分类的机器学习和深度学习

随着技术进步,尤其是地理信息系统 (GIS)工具的进步,可以更有效地对土地利用进行分类。分类的使用可用于识别植被覆盖变化、非法采矿区和植被抑制区域,这些只是土地利用分类的众多示例中的一部分。 分类的一大困难是确定要解决的问题的级别。我分类的目的是什么?分类是否需…

【科普知识】电机的10种工作制说明:S1~S10

如今,在我们的生活中,电机几乎无处不在,从国防、工农、运输、临床器械、通讯到生活中的洗衣机、风扇、吸尘器、电动机器人等,都在应用着各式各样的电动机。 电机作为一种能够将电能转换成机械能的装置,是现代工业生产和…

【搭建私有云盘】无公网IP,在外远程访问本地微力同步

文章目录 1.前言2. 微力同步网站搭建2.1 微力同步下载和安装2.2 微力同步网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语 1.前言 私有云盘作为云存储概念的延伸,虽然谈不上多么新颖,但是其…

快速上手非关系型数据库Redis

一、Redis介绍 1.非关系型数据库,纯内存操作,key-value存储,性能很高,可持久化(内存---->保存到硬盘上) 2.缓存,计数器,验证码,geo地理位置信息,发布订阅…

RocketMq windows 安装

RocketMq安装步骤: 1、直接在官网下载。也可以从这里自取 https://rocketmq.apache.org/download/ 2、修改bin目录下的文件 runserver.cmd 和 runbroker.cmd文件。主要修改所占用内存的大小。 runserver.cmd 修改如下: runbroker.cmd 修改如下&#xff…

【人脸检测】——Sample and Computation Redistribution for Efficient Face Detection论文简读

人脸检测 摘要 在非受控人脸检测方面已经取得了巨大的进步,但低计算成本和高精度的高效人脸检测仍然是一个开放的挑战。作者提出了两种简单而有效的方法:样本再分配(SR)和计算再分配(CR)。在WIDER FACE上进…

AI失业潮来袭,某些部门裁员过半

历史的车轮滚滚向前,每次生产力的大幅跃进,都会造成一批失业潮。想当年,纺纱机的出现让无数手工作坊的织布师傅失业。如今,在AI技术的催化下,同样的事正在互联网行业的各个领域重演。 疯狂的裁员浪潮 “AI15秒做的&am…

np.convolve(x,h, mode=‘##‘)的使用

用法: np.convolve(a,v,mode) a代表卷积数据,v卷积核大小,mode卷积方式,mode卷积方式有三种 same full valid mode可能的三种取值情况: full’ 默认值,返回每一个卷积值,长度是NM-1,在卷积的…

【策略设计模式详解】C/Java/JS/Go/Python/TS不同语言实现

简介 策略模式(Strategy Pattern)属于行为型设计模式。将每一个算法封装到具有共同接口的独立类中,根据需要来绑定策略,使得具体实现和策略解耦。 当你想使用对象中各种不同的算法变体,使用if...else 所带来的复杂和…