OpenCV实现物体尺寸的测量

一 ,项目分析

物体尺寸测量的思路是找一个确定尺寸的物体作为参照物,根据已知的计算未知物体尺寸。

如下图所示,绿色的板子尺寸为220*300(单位:毫米),通过程序计算白色纸片的长度。

主要是通过图像处理技术,实现对一张图片中物体的尺寸测量,具体需求如下:

  1. 读入一张图片,该图片中包含需要进行测量的物体

  2. 对图片进行边缘检测,找到所有的轮廓

  3. 在所有的轮廓中选取面积最大的轮廓,即为所要测量的物体

  4. 对该物体进行透视变换,将其变成一个矩形

  5. 在矩形中,通过线段交叉点的方式,确定出物体的高度和宽度

  6. 将高度和宽度转换成实际尺寸,并在图片上标注出来

  7. 将结果显示在屏幕上。

二,实现流程

  1. 导入必要的库:cv2和numpy。

import cv2
import numpy as np

2.定义了一些参数:缩放比例、输出图片的宽度和高度。

scale = 2
wP = 220 * scale
hP = 300 * scale

3.定义了一个函数getContours,用于获取图像中的轮廓。该函数首先将图像转换为灰度图,然后进行高斯模糊,再进行Canny边缘检测,接着进行膨胀和腐蚀操作,最后使用findContours函数找到所有的外轮廓。根据面积和拐点个数的条件进行轮廓过滤,返回过滤后的轮廓列表。

def getContours(img, cThr=[100, 100], showCanny=False, minArea=1000, filter=0, draw=False):
    imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1)
    imgCanny = cv2.Canny(imgBlur, cThr[0], cThr[1])
    kernel = np.ones((5, 5))
    imgDial = cv2.dilate(imgCanny, kernel, iterations=3)
    imgThre = cv2.erode(imgDial, kernel, iterations=2)
    if showCanny: cv2.imshow('Canny', imgThre)

    # 寻找所有的外轮廓
    _, contours, _ = cv2.findContours(imgThre, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    finalCountours = []
    # 遍历找到的轮廓
    for i in contours:
        area = cv2.contourArea(i)  # 轮廓的面积
        if area > minArea:  # 如果大于设置的最小轮廓值,就往下走
            peri = cv2.arcLength(i, True)  # 封闭的轮廓的长度
            approx = cv2.approxPolyDP(i, 0.02 * peri, True)  # 封闭轮廓的拐点
            bbox = cv2.boundingRect(approx)  # 找到边界框
            if filter > 0:  # 需不需要根据拐点个数进行过滤轮廓
                if len(approx) == filter:  # 拐点个数,面积,拐点位置,边界框,轮廓
                    finalCountours.append([len(approx), area, approx, bbox, i])
            else:
                finalCountours.append([len(approx), area, approx, bbox, i])
    finalCountours = sorted(finalCountours, key=lambda x: x[1], reverse=True)  # 根据轮廓大小进行从大到小的排序
    if draw:  # 是否要画出来轮廓
        for con in finalCountours:
            cv2.drawContours(img, con[4], -1, (0, 0, 255), 3)
    return img, finalCountours

4.   定义了一个函数reorder,用于重新排序四个点的顺序。根据四个点的和、差值的最大值和最小值进行排序,返回重新排序后的点。

def reorder(myPoints):
    myPointsNew = np.zeros_like(myPoints)
    myPoints = myPoints.reshape((4, 2))
    add = myPoints.sum(1)
    myPointsNew[0] = myPoints[np.argmin(add)]
    myPointsNew[3] = myPoints[np.argmax(add)]
    diff = np.diff(myPoints, axis=1)
    myPointsNew[1] = myPoints[np.argmin(diff)]
    myPointsNew[2] = myPoints[np.argmax(diff)]

    return myPointsNew

5.    定义了一个函数warpImg,用于对图像进行透视变换。根据输入的四个点和输出图像的宽度和高度,使用getPerspectiveTransform函数计算透视变换矩阵,然后使用warpPerspective函数进行透视变换,并对变换后的图像进行裁剪。

def warpImg(img, points, w, h, pad=20):
    # print(points)
    points = reorder(points)
    pts1 = np.float32(points)
    pts2 = np.float32([[0, 0], [w, 0], [0, h], [w, h]])
    matrix = cv2.getPerspectiveTransform(pts1, pts2)
    imgWrap = cv2.warpPerspective(img, matrix, (w, h))
    imgWrap = imgWrap[pad:imgWrap.shape[0] - pad, pad:imgWrap.shape[1] - pad]

    return imgWrap

6.    定义了一个函数findDis,用于计算两个点之间的距离。

def findDis(pts1, pts2):
    return ((pts2[0] - pts1[0]) ** 2 + (pts2[1] - pts1[1]) ** 2) ** 0.5

7.   读取输入的图像,并将其缩放到指定的尺寸。

path = 'E:\All_in\opencv\chicun.png'
img = cv2.imread(path)
img = cv2.resize(img, (0, 0), None, 0.18, 0.18)

8.    使用getContours函数获取图像中的轮廓,设定最小轮廓面积为8000,拐点个数为4,返回过滤后的轮廓列表。

img, conts = getContours(img, minArea=8000, filter=4)

9.   判断是否存在轮廓,若存在,则找到最大轮廓的拐点位置,使用warpImg函数对图像进行透视变换,并返回变换后的图像。

if len(conts) != 0:
    biggest = conts[0][2]  # 最大轮廓的拐点位置
    # print(biggest)
    imgWrap = warpImg(img, biggest, wP, hP)

10.    对变换后的图像再次使用getContours函数获取轮廓,设定最小轮廓面积为2000,拐点个数为4,返回过滤后的轮廓列表。

    imgContours2, conts2 = getContours(imgWrap, minArea=2000, filter=4, cThr=[50, 50])

11.    遍历过滤后的轮廓列表,对每个轮廓绘制多边形和箭头,并计算出两个方向的长度,然后在图像上标注长度信息。

   if len(conts) != 0:
        for obj in conts2:
            cv2.polylines(imgContours2, [obj[2]], True, (0, 255, 0), 2)
            nPoints = reorder(obj[2])
            nW = round((findDis(nPoints[0][0] // scale, nPoints[1][0] // scale) / 10), 1)
            nH = round((findDis(nPoints[0][0] // scale, nPoints[2][0] // scale) / 10), 1)
            # 创建箭头
            cv2.arrowedLine(imgContours2, (nPoints[0][0][0], nPoints[0][0][1]), (nPoints[1][0][0], nPoints[1][0][1]),
                            (255, 0, 255), 3, 8, 0, 0.05)
            cv2.arrowedLine(imgContours2, (nPoints[0][0][0], nPoints[0][0][1]), (nPoints[2][0][0], nPoints[2][0][1]),
                            (255, 0, 255), 3, 8, 0, 0.05)
            x, y, w, h = obj[3]
            cv2.putText(imgContours2, '{}cm'.format(nW), (x + 30, y - 10), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1,
                        (255, 0, 255), 2)
            cv2.putText(imgContours2, '{}cm'.format(nH), (x - 70, y + h // 2), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1,
                        (255, 0, 255), 2)

12 . 显示结果图像和原始图像,并等待按下任意键关闭窗口。

​
cv2.imshow('background', imgContours2)

cv2.imshow('Original', img)
cv2.waitKey(0)

​

三 ,结果展示

四 ,应用前景

  1. 工业测量:在工业领域中,Opencv测尺寸可以用于检测零件尺寸是否符合规格要求。比如,在生产线上,可以通过拍摄零件图片,利用Opencv测量零件的长度、宽度、直径等参数,以确保产品质量。

  2. 医学影像:Opencv测尺寸可以应用于医学影像领域中,例如在CT、MRI等医学影像中,测量肿瘤大小、血管直径等。这对于医生来说是非常重要的,可以帮助他们做出准确的诊断和治疗方案。

  3. 建筑测量:在建筑和房地产领域中,Opencv测尺寸可以用于测量建筑物的尺寸、房间面积等。通过拍摄建筑物的照片,利用Opencv进行测量,可以帮助建筑师、设计师和房地产开发商进行规划和设计。

  4. 车辆测量:Opencv测尺寸可以应用于交通领域,例如测量车辆的长度、宽度、高度等。这对于道路设计、桥梁设计、停车场规划等方面是非常重要的。

  5. 教育培训:Opencv测尺寸可以用于教育培训领域中,例如在物理实验中测量物体的大小、重量等。通过利用Opencv进行测量,可以帮助学生更直观地理解和掌握物理概念。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/103506.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

我国有多少个港口?

港口是什么? 港口是海洋运输中不可或缺的重要设施之一,是连接陆路和水路运输的重要节点。港口通常是指位于沿海地区的水陆交通枢纽,是船舶停靠、装卸货物、储存物资和维修船只的场所。港口一般由码头、泊位、仓库、货场、客运站等设施组成&a…

数据结构和算法概述

什么是数据结构? 官方解释: 数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及他们之间的关系和操作等相关问题的学科。 大白话: 数据结构就是把数据元素按照一定的关系组织起来的集合,用来组织和存储…

【网安大模型专题10.19】※论文5:ChatGPT+漏洞定位+补丁生成+补丁验证+APR方法+ChatRepair+不同修复场景+修复效果(韦恩图展示)

Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT 写在最前面背景介绍自动程序修复流程Process of APR (automated program repair)1、漏洞程序2、漏洞定位模块3、补丁生成4、补丁验证 (可以学习的PPT设计)经典的…

Spring Cloud之服务熔断与降级(Hystrix)

目录 Hystrix 概念 作用 服务降级 简介 使用场景 接口降级 服务端服务降级 1.添加依赖 2.定义接口 3.实现接口 4.Controller类使用 5.启动类添加注释 6.浏览器访问 客户端服务降级 1.添加依赖 2.application.yml 中添加配置 3.定义接口 4.Controller类使用 …

解读意大利葡萄酒分类系统

由于该国众多的产区和复杂的品种,要想真正掌握意大利葡萄酒是相当困难的。仅仅是试图从复杂混乱的葡萄酒标签中辨别信息的想法就足以让许多人焦虑不安。 位于托斯卡纳的基安蒂酒地区,Il Ciliegio生产的葡萄酒标签上包含以下名称之一:基安蒂酒科利塞内西…

通过IP地址可以做什么

通过IP地址可以做很多事情,因为它是互联网通信的基础之一。本文将探讨IP地址的定义、用途以及一些可能的应用。 IP地址的用途 1. 设备标识:IP地址用于标识互联网上的每个设备,这包括计算机、服务器、路由器、智能手机等。它类似于我们日常生…

unity 一键替换 UI上所有字体,批量替换字体(包括:Text和Text (TMP))

前言:在开发中会遇到这种情况,开发完了,发现UI字体没有替换,特别是需要发布到WebGL端的同学,突然发现无法显示汉字了。下面一个非常方便的方法完美解决。 1.解压出来的脚本放在Edit文件下,没有的创建一个 2…

Linux 基于sysfs的GPIO读写操作

https://bbs.huaweicloud.com/blogs/297252 前言 最近接触到Linux系统中的GPIO开发,这里做个小总结,也分享一下;本文会介绍GPIO的读写,介绍基本原理,以及不同读写方式的性能。 一、GPIO sysfs interface 基本原理 …

计算机视觉中的数据预处理与模型训练技巧总结

计算机视觉主要问题有图像分类、目标检测和图像分割等。针对图像分类任务,提升准确率的方法路线有两条,一个是模型的修改,另一个是各种数据处理和训练的技巧(tricks)。图像分类中的各种技巧对于目标检测、图像分割等任务也有很好的作用&#…

Http长连接同一个socket多个请求和响应如何保证一一对应?

HTTP/2引入二进制数据帧和流的概念,其中帧对数据进行顺序标识,如下图所示,这样浏览器收到数据之后,就可以按照序列对数据进行合并,而不会出现合并后数据错乱的情况。同样是因为有了序列,服务器就可以并行的…

从REST到GraphQL:升级你的Apollo体验

前言 「作者主页」:雪碧有白泡泡 「个人网站」:雪碧的个人网站 「推荐专栏」: ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄,vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…

【Java系列】ArrayList

ArrayList 添加元素访问元素修改元素删除元素计算大小迭代数组列表其他的引用类型ArrayList 排序Java ArrayList 方法系列文章系列文章版本记录 引言 ArrayList 类是一个可以动态修改的数组,与普通数组的区别就是它是没有固定大小的限制,我们可以添加或删…

Guava-RateLimiter详解

简介: 常用的限流算法有漏桶算法和令牌桶算法,guava的RateLimiter使用的是令牌桶算法,也就是以固定的频率向桶中放入令牌,例如一秒钟10枚令牌,实际业务在每次响应请求之前都从桶中获取令牌,只有取到令牌的请…

structs2 重构成SpringBoot架构

structs2 重构成SpringBoot架构 目录参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a better result,wait for change,challenge Survive. happy for hardess to solve den…

JAVA电商平台免费搭建 B2B2C商城系统 多用户商城系统 直播带货 新零售商城 o2o商城 电子商务 拼团商城 分销商城

涉及平台 平台管理、商家端(PC端、手机端)、买家平台(H5/公众号、小程序、APP端(IOS/Android)、微服务平台(业务服务) 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis …

vue如何使用冻结对象提升代码效率及其原理解析

先给大家伙整个实际工作中一定会碰到的问题 如下vue dome ,它的代码非常简单功能也1非常简单,就是一个按钮,点击后会显示有多少条数据 来看看源码, html部分就是一个按钮绑定了一个loadData事件,然后在p标签内展示了这个myData这个数据的长度 <template><div id&quo…

竞赛选题 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐…

知识图谱+推荐系统 文献阅读

文献阅读及整理 知识图谱推荐系统 知识图谱 1 基于知识图谱的电商领域智能问答系统研究与实现 [1]蒲海坤. 基于知识图谱的电商领域智能问答系统研究与实现[D].西京学院,2022.DOI:10.27831/d.cnki.gxjxy.2021.000079. 知识点 BIO标记策略进行人工标记,构建了电商领域商品…

嚼一嚼Halcon中的3D手眼标定

文章目录 一、问题概述1、何为手眼标定&#xff1f;2、手眼标定的2种形式1&#xff09;眼在手上&#xff08;eye in hand&#xff09;&#xff1a;即相机固定在机械臂末端2&#xff09;眼在手外&#xff08;eye to hand&#xff09;&#xff1a;即相机固定在机械臂以外的地方 3…

2023年中国条装漱口水市场发展趋势分析: 便携式条装漱口水发展势头强劲[图]

漱口水已在欧美发达国家流行多年&#xff0c;可能和社交生活礼仪有很大关系。近年来&#xff0c;由于市场竞争激烈&#xff0c;漱口水除了使口气清新&#xff0c;以及宣称可消除口臭的细菌&#xff0c;着重强调其预防和治疗牙齿及口腔疾病&#xff0c;增进口腔健康的功能的产品…