【网安大模型专题10.19】※论文5:ChatGPT+漏洞定位+补丁生成+补丁验证+APR方法+ChatRepair+不同修复场景+修复效果(韦恩图展示)

Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT

  • 写在最前面
  • 背景介绍
    • 自动程序修复流程Process of APR (automated program repair)
      • 1、漏洞程序
      • 2、漏洞定位模块
      • 3、补丁生成
      • 4、补丁验证
    • (可以学习的PPT设计)经典的APR方法traditional APR tools
    • learning-based APR tools
  • 方法Methodology
    • Methodology - gap差距
      • 当前的方法current method
      • 局限性
    • 方法概述overview
      • ① 建立初始 prompt,得到第一个 patch
      • ②通过 test suite 判断 patch 是否成立
      • ③ 输入已经获取的 plausible patch 及相关信息,获取更多 plausible patch
      • 最后两个步骤
  • 评估Evaluation
    • 基线Baseline
    • 基准Benchmark:
    • 研究问题Research questions
      • RQ1:ChatRepair与最先进的APR技术相比,其性能如何
        • 韦恩图(展示不同方法修复的集合)
      • RQ2: ChatRepair在不同的修复场景下是如何执行的?
      • RQ3: ChatRepair的不同组成部分对改进修复效果的贡献是什么

写在最前面

本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。

Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT

arXiv 2023.4.1
https://arxiv.org/pdf/2304.00385.pdf

Chunqiu Steven Xia, University of Illinois Urbana-Champaign
Lingming Zhang, University of Illinois Urbana-Champaign

记录一位同学的分享
PPT简约大方、重点突出,学到了一些很巧妙的小设计
同时梳理了自动程序修复APR的流程、常见方法,我之前没接触过但也有了一定的了解
分享论文循序渐进,这种阅读论文的步骤之后或许可以尝试

之后自己可以常回顾、多学习学习

背景介绍

自动程序修复流程Process of APR (automated program repair)

在这里插入图片描述

1、漏洞程序

Vulnerability Detection
(NDSS 18)Vuldeepecker: A deep learning-based system for vulnerability detection
(security 22)Mining Node.js Vulnerabilities via Object Dependence Graph and Query

2、漏洞定位模块

Fault Localization
(TSE 23) Effective Isolation of Fault-Correlated Variables via Statistical and Mutation Analysis

3、补丁生成

Patch Generation

4、补丁验证

Patch Correctness Checking
(FSE 23) A Large-scale Empirical Review of Patch Correctness Checking Approaches

(可以学习的PPT设计)经典的APR方法traditional APR tools

在这里插入图片描述

  1. 启发式搜索(GenProg)
    insight:重用项目中的代码产生正确的修复补丁
    method:通过交叉和变异操作实现已有代码的重新组合
  2. 基于历史修复
    insight:不同软件中 bug 会重复出现,可以作为后续修复的指导
    method:通过历史信息指导启发式搜索
  3. 利用相似代码
    insight:与缺陷代码相似的代码可能存在同样的错误
    method:通过相似信息指导启发式搜索
  4. 基于修复模版
    insight:特定漏洞修复是可以总结的一些模式
    method:专家总结定义修复模版,直接进行应用
  5. 基于语义约束
    insight:修复 bug 就是改变程序使得满足 test case 的约束
    method:搜索约束并转换为约束求解问题

learning-based APR tools

  1. 补丁排序模型
    method:通过提取补丁特征给补丁排序
  2. 补丁模版获取
    method:聚类收集最常见的修复方式(模板)
  3. 端到端补丁生成模型(模型选择与训练数据的差别)
  • NMT-based
  • LLM-based

方法Methodology

Methodology - gap差距

当前的方法current method

有bug的代码被移除,LLM直接预测正确的代码
buggy code is removed and a LLM directly predicts correct code

给定前缀和后缀上下文
given the prefix and suffix context

局限性

现有基于llm的APR工具的局限性:
limitation of existing LLM-based APR tools:

1.丢失测试失败信息
missing test failure information

2.重复抽样
repeated sampling

3.对合理补丁的无知
ignorance of plausible patches

在这里插入图片描述

可信的补丁:通过测试套件的补丁
plausible patches: patches that pass the test suite

方法概述overview

这页PPT:将总览图黑色虚线框出
在这里插入图片描述
建立初始 prompt,得到第一个 patch

通过 test suite 判断 patch 是否成立

  1. 如果成立进入下一阶段
  2. 如果不成立持续询问 Chatgpt 直到获取一个 plausible patch

输入已经获取的 plausible patch 及相关信息,获取更多 plausible patch
在这里插入图片描述
可信的补丁:通过测试套件的补丁
plausible patches: patches that pass the test suite

① 建立初始 prompt,得到第一个 patch

初始输入initial input(通过红色虚线方框突出重点)
在这里插入图片描述

1、初始提示符:您是一个自动程序修复工具
初始 prompt:You are an Automated Program Repair Tool
在这里插入图片描述

2、在同一个bug项目中包含一些历史bug修复的例子
include a few examples of historical bug fixes within the same buggy project
在这里插入图片描述

少样本通过这样做,我们将模型调整到修复任务并允许它
few-shot examples By doing so, we gear the model towards the repair task and allow it

学习任务的所需输出格式(即补丁)。
to learn the desired output format (i.e. a patch) of the task.

3、用填充的位置指示器替换函数中有错误的代码完全≪≫
replace the buggy code within the function with an infill location indicator (≫ [ INFILL ] ≪)

在这里插入图片描述

4、提供原始的bug行
provide the original buggy line
在这里插入图片描述

5、失败的测试1)它的名称,2)触发测试失败的相关代码行,以及3)产生的错误信息
failing test(s) 1) its name, 2) the relevant code line(s) triggering the test failure, and 3) the error message produced

在这里插入图片描述
在这里插入图片描述

②通过 test suite 判断 patch 是否成立

  1. 如果成立进入下一阶段
  2. 如果不成立持续询问 Chatgpt 直到获取一个 plausible patch

可信的补丁:通过测试套件的补丁
plausible patches: patches that pass the test suite

在这里插入图片描述

③ 输入已经获取的 plausible patch 及相关信息,获取更多 plausible patch

可信的补丁:通过测试套件的补丁
plausible patches: patches that pass the test suite

在这里插入图片描述

最后两个步骤

在这里插入图片描述

评估Evaluation

基线Baseline

1、8个最近的基于学习和llm的APR基线
8 recent learning-based and LLM-based APR baselines

2、12个精选的传统方法
12 selected traditional techniques

3、BaseChatGPT
BaseChatGPT

基准Benchmark:

4j和QuixBugs的缺陷
Defects4j and QuixBugs

研究问题Research questions

1、RQ1:ChatRepair与最先进的APR技术相比,其性能如何?
• RQ1: How does the performance of ChatRepair compare against the state-of-the-art techniques for APR?

2、RQ2: ChatRepair在不同的修复场景下是如何执行的?
• RQ2: How does ChatRepair perform when used in different repair scenarios?

3、RQ3: ChatRepair的不同组成部分对改进修复效果的贡献是什么
• RQ3: What are the contributions of different components of ChatRepair in improving repair effectiveness?

RQ1:ChatRepair与最先进的APR技术相比,其性能如何

在这里插入图片描述

1.ChatRepair可以比仅使用ChatGPT模型的基线,分别在Defects4j 1.2和2.0上,提高修复了34和23个bug
ChatRepair can improve over the baseline of just using the ChatGPT model with 34 and 23 more bug fixes on Defects4j 1.2 and 2.0 respectively.

2.比目前最先进的APR工具多15和17个。
with 15 and 17 more than the current state-of-the-art APR tool.
在这里插入图片描述

ChatRepair能够正确地修复quixbugs中的所有bug——java和python数据集,击败所有性能最好的技术
ChatRepair is able to correctly fix all bugs within the QuixBugs-Java and-Python datasets, beating out all top-performing techniques.

韦恩图(展示不同方法修复的集合)

存在有些方法识别的漏洞,这篇文章不能识别
在这里插入图片描述
在这里插入图片描述

RQ2: ChatRepair在不同的修复场景下是如何执行的?

基线:BaseChatGPT / CodexRepair
baseline: BaseChatGPT / CodexRepair

在这里插入图片描述

BaseChatGPT没有产生令人印象深刻的改进
BaseChatGPT not yield impressive improvements

RQ3: ChatRepair的不同组成部分对改进修复效果的贡献是什么

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/103502.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Cloud之服务熔断与降级(Hystrix)

目录 Hystrix 概念 作用 服务降级 简介 使用场景 接口降级 服务端服务降级 1.添加依赖 2.定义接口 3.实现接口 4.Controller类使用 5.启动类添加注释 6.浏览器访问 客户端服务降级 1.添加依赖 2.application.yml 中添加配置 3.定义接口 4.Controller类使用 …

解读意大利葡萄酒分类系统

由于该国众多的产区和复杂的品种,要想真正掌握意大利葡萄酒是相当困难的。仅仅是试图从复杂混乱的葡萄酒标签中辨别信息的想法就足以让许多人焦虑不安。 位于托斯卡纳的基安蒂酒地区,Il Ciliegio生产的葡萄酒标签上包含以下名称之一:基安蒂酒科利塞内西…

通过IP地址可以做什么

通过IP地址可以做很多事情,因为它是互联网通信的基础之一。本文将探讨IP地址的定义、用途以及一些可能的应用。 IP地址的用途 1. 设备标识:IP地址用于标识互联网上的每个设备,这包括计算机、服务器、路由器、智能手机等。它类似于我们日常生…

unity 一键替换 UI上所有字体,批量替换字体(包括:Text和Text (TMP))

前言:在开发中会遇到这种情况,开发完了,发现UI字体没有替换,特别是需要发布到WebGL端的同学,突然发现无法显示汉字了。下面一个非常方便的方法完美解决。 1.解压出来的脚本放在Edit文件下,没有的创建一个 2…

Linux 基于sysfs的GPIO读写操作

https://bbs.huaweicloud.com/blogs/297252 前言 最近接触到Linux系统中的GPIO开发,这里做个小总结,也分享一下;本文会介绍GPIO的读写,介绍基本原理,以及不同读写方式的性能。 一、GPIO sysfs interface 基本原理 …

计算机视觉中的数据预处理与模型训练技巧总结

计算机视觉主要问题有图像分类、目标检测和图像分割等。针对图像分类任务,提升准确率的方法路线有两条,一个是模型的修改,另一个是各种数据处理和训练的技巧(tricks)。图像分类中的各种技巧对于目标检测、图像分割等任务也有很好的作用&#…

Http长连接同一个socket多个请求和响应如何保证一一对应?

HTTP/2引入二进制数据帧和流的概念,其中帧对数据进行顺序标识,如下图所示,这样浏览器收到数据之后,就可以按照序列对数据进行合并,而不会出现合并后数据错乱的情况。同样是因为有了序列,服务器就可以并行的…

从REST到GraphQL:升级你的Apollo体验

前言 「作者主页」:雪碧有白泡泡 「个人网站」:雪碧的个人网站 「推荐专栏」: ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄,vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…

【Java系列】ArrayList

ArrayList 添加元素访问元素修改元素删除元素计算大小迭代数组列表其他的引用类型ArrayList 排序Java ArrayList 方法系列文章系列文章版本记录 引言 ArrayList 类是一个可以动态修改的数组,与普通数组的区别就是它是没有固定大小的限制,我们可以添加或删…

Guava-RateLimiter详解

简介: 常用的限流算法有漏桶算法和令牌桶算法,guava的RateLimiter使用的是令牌桶算法,也就是以固定的频率向桶中放入令牌,例如一秒钟10枚令牌,实际业务在每次响应请求之前都从桶中获取令牌,只有取到令牌的请…

structs2 重构成SpringBoot架构

structs2 重构成SpringBoot架构 目录参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a better result,wait for change,challenge Survive. happy for hardess to solve den…

JAVA电商平台免费搭建 B2B2C商城系统 多用户商城系统 直播带货 新零售商城 o2o商城 电子商务 拼团商城 分销商城

涉及平台 平台管理、商家端(PC端、手机端)、买家平台(H5/公众号、小程序、APP端(IOS/Android)、微服务平台(业务服务) 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis …

vue如何使用冻结对象提升代码效率及其原理解析

先给大家伙整个实际工作中一定会碰到的问题 如下vue dome ,它的代码非常简单功能也1非常简单,就是一个按钮,点击后会显示有多少条数据 来看看源码, html部分就是一个按钮绑定了一个loadData事件,然后在p标签内展示了这个myData这个数据的长度 <template><div id&quo…

竞赛选题 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐…

知识图谱+推荐系统 文献阅读

文献阅读及整理 知识图谱推荐系统 知识图谱 1 基于知识图谱的电商领域智能问答系统研究与实现 [1]蒲海坤. 基于知识图谱的电商领域智能问答系统研究与实现[D].西京学院,2022.DOI:10.27831/d.cnki.gxjxy.2021.000079. 知识点 BIO标记策略进行人工标记,构建了电商领域商品…

嚼一嚼Halcon中的3D手眼标定

文章目录 一、问题概述1、何为手眼标定&#xff1f;2、手眼标定的2种形式1&#xff09;眼在手上&#xff08;eye in hand&#xff09;&#xff1a;即相机固定在机械臂末端2&#xff09;眼在手外&#xff08;eye to hand&#xff09;&#xff1a;即相机固定在机械臂以外的地方 3…

2023年中国条装漱口水市场发展趋势分析: 便携式条装漱口水发展势头强劲[图]

漱口水已在欧美发达国家流行多年&#xff0c;可能和社交生活礼仪有很大关系。近年来&#xff0c;由于市场竞争激烈&#xff0c;漱口水除了使口气清新&#xff0c;以及宣称可消除口臭的细菌&#xff0c;着重强调其预防和治疗牙齿及口腔疾病&#xff0c;增进口腔健康的功能的产品…

Mysql第四篇---数据库索引优化与查询优化

文章目录 数据库索引优化与查询优化索引失效案例数据准备1. 全值匹配2 最佳左前缀法则(联合索引)主键插入顺序4 计算、函数导致索引失效5 类型转换(自动或手动)导致索引失效6 范围条件右边的列索引失效7 不等于(!或者<>)索引失效8 is null可以使用索引, is not null无法使…

工程管理系统简介 工程管理系统源码 java工程管理系统 工程管理系统功能设计

工程项目管理软件&#xff08;工程项目管理系统&#xff09;对建设工程项目管理组织建设、项目策划决策、规划设计、施工建设到竣工交付、总结评估、运维运营&#xff0c;全过程、全方位的对项目进行综合管理 工程项目各模块及其功能点清单 一、系统管理 1、数据字典&am…

机器学习(新手入门)-线性回归 #房价预测

题目&#xff1a;给定数据集dataSet&#xff0c;每一行代表一组数据记录,每组数据记录中&#xff0c;第一个值为房屋面积&#xff08;单位&#xff1a;平方英尺&#xff09;&#xff0c;第二个值为房屋中的房间数&#xff0c;第三个值为房价&#xff08;单位&#xff1a;千美元…