计算机视觉中的数据预处理与模型训练技巧总结

计算机视觉主要问题有图像分类、目标检测和图像分割等。针对图像分类任务,提升准确率的方法路线有两条,一个是模型的修改,另一个是各种数据处理和训练的技巧(tricks)。图像分类中的各种技巧对于目标检测、图像分割等任务也有很好的作用,因此值得好好总结。本文在精读论文的基础上,总结了图像分类任务的各种tricks如下:

  • Warmup

  • Linear scaling learning rate

  • Label-smoothing

  • Random image cropping and patching

  • Knowledge Distillation

  • Cutout

  • Random erasing

  • Cosine learning rate decay

  • Mixup training

  • AdaBoud

  • AutoAugment

  • 其他经典的tricks

1. Warmup

学习率是神经网络训练中最重要的超参数之一,针对学习率的技巧有很多。Warm up是在ResNet论文[1]中提到的一种学习率预热的方法。由于刚开始训练时模型的权重(weights)是随机初始化的(全部置为0是一个坑,原因见[2]),此时选择一个较大的学习率,可能会带来模型的不稳定。学习率预热就是在刚开始训练的时候先使用一个较小的学习率,训练一些epoches或iterations,等模型稳定时再修改为预先设置的学习率进行训练。论文[1]中使用一个110层的ResNet在cifar10上训练时,先用0.01的学习率训练直到训练误差低于80%(大概训练了400个iterations),然后使用0.1的学习率进行训练。

上述的方法是constant warmup,18年Facebook又针对上面的warmup进行了改进[3],因为从一个很小的学习率一下变为比较大的学习率可能会导致训练误差突然增大。论文[3]提出了gradual warmup来解决这个问题,即从最开始的小学习率开始,每个iteration增大一点,直到最初设置的比较大的学习率。

from torch.optim.lr_scheduler import _LRScheduler
class GradualWarmupScheduler(_LRScheduler):
    """
    Args:
        optimizer (Optimizer): Wrapped optimizer.
        multiplier: target learning rate = base lr * multiplier
        total_epoch: target learning rate is reached at total_epoch, gradually
        after_scheduler: after target_epoch, use this scheduler(eg. ReduceLROnPlateau)
    """
    def __init__(self, optimizer, multiplier, total_epoch, after_scheduler=None):
        self.multiplier = multiplier
        if self.multiplier <= 1.:
            raise ValueError('multiplier should be greater than 1.')
        self.total_epoch = total_epoch
        self.after_scheduler = after_scheduler
        self.finished = False
        super().__init__(optimizer)
    def get_lr(self):
        if self.last_epoch > self.total_epoch:
            if self.after_scheduler:
                if not self.finished:
                    self.after_scheduler.base_lrs = [base_lr * self.multiplier for base_lr in self.base_lrs]
                    self.finished = True
                return self.after_scheduler.get_lr()
            return [base_lr * self.multiplier for base_lr in self.base_lrs]
        return [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs]
    def step(self, epoch=None):
        if self.finished and self.after_scheduler:
            return self.after_scheduler.step(epoch)
        else:
            return super(GradualWarmupScheduler, self).step(epoch)

2. Linear scaling learning rate

Linear scaling learning rate是在论文[3]中针对比较大的batch size而提出的一种方法。

在凸优化问题中,随着批量的增加,收敛速度会降低,神经网络也有类似的实证结果。随着batch size的增大,处理相同数据量的速度会越来越快,但是达到相同精度所需要的epoch数量越来越多。也就是说,使用相同的epoch时,大batch size训练的模型与小batch size训练的模型相比,验证准确率会减小。

上面提到的gradual warmup是解决此问题的方法之一。另外,linear scaling learning rate也是一种有效的方法。在mini-batch SGD训练时,梯度下降的值是随机的,因为每一个batch的数据是随机选择的。增大batch size不会改变梯度的期望,但是会降低它的方差。也就是说,大batch size会降低梯度中的噪声,所以我们可以增大学习率来加快收敛。

具体做法很简单,比如ResNet原论文[1]中,batch size为256时选择的学习率是0.1,当我们把batch size变为一个较大的数b时,学习率应该变为 0.1 × b/256

3. Label-smoothing

在分类问题中,我们的最后一层一般是全连接层,然后对应标签的one-hot编码,即把对应类别的值编码为1,其他为0。这种编码方式和通过降低交叉熵损失来调整参数的方式结合起来,会有一些问题。这种方式会鼓励模型对不同类别的输出分数差异非常大,或者说,模型过分相信它的判断。但是,对于一个由多人标注的数据集,不同人标注的准则可能不同,每个人的标注也可能会有一些错误。模型对标签的过分相信会导致过拟合。

标签平滑(Label-smoothing regularization,LSR)是应对该问题的有效方法之一,它的具体思想是降低我们对于标签的信任,例如我们可以将损失的目标值从1稍微降到0.9,或者将从0稍微升到0.1。标签平滑最早在inception-v2[4]中被提出,它将真实的概率改造为:

其中,ε是一个小的常数,K是类别的数目,y是图片的真正的标签,i代表第i个类别,是图片为第i类的概率。总的来说,LSR是一种通过在标签y中加入噪声,实现对模型约束,降低模型过拟合程度的一种正则化方法。

import torch
import torch.nn as nn
class LSR(nn.Module):
    def __init__(self, e=0.1, reduction='mean'):
        super().__init__()
        self.log_softmax = nn.LogSoftmax(dim=1)
        self.e = e
        self.reduction = reduction
    def _one_hot(self, labels, classes, value=1):
        """
            Convert labels to one hot vectors
        Args:
            labels: torch tensor in format [label1, label2, label3, ...]
            classes: int, number of classes
            value: label value in one hot vector, default to 1
        Returns:
            return one hot format labels in shape [batchsize, classes]
        """
        one_hot = torch.zeros(labels.size(0), classes)
        #labels and value_added  size must match
        labels = labels.view(labels.size(0), -1)
        value_added = torch.Tensor(labels.size(0), 1).fill_(value)
        value_added = value_added.to(labels.device)
        one_hot = one_hot.to(labels.device)
        one_hot.scatter_add_(1, labels, value_added)
        return one_hot
    def _smooth_label(self, target, length, smooth_factor):
        """convert targets to one-hot format, and smooth
        them.
        Args:
            target: target in form with [label1, label2, label_batchsize]
            length: length of one-hot format(number of classes)
            smooth_factor: smooth factor for label smooth
        Returns:
            smoothed labels in one hot format
        """
        one_hot = self._one_hot(target, length, value=1 - smooth_factor)
        one_hot += smooth_factor / length
        return one_hot.to(target.device)

 4. Random image cropping and patching

Random image cropping and patching (RICAP)[7]方法随机裁剪四个图片的中部分,然后把它们拼接为一个图片,同时混合这四个图片的标签。RICAP在caifar10上达到了2.19%的错误率。

 如下图所示,Ix, Iy是原始图片的宽和高。w和h称为boundary position,它决定了四个裁剪得到的小图片的尺寸。w和h从beta分布Beta(β, β)中随机生成,β也是RICAP的超参数。最终拼接的图片尺寸和原图片尺寸保持一致。

 5. Knowledge Distillation

 提高几乎所有机器学习算法性能的一种非常简单的方法是在相同的数据上训练许多不同的模型,然后对它们的预测进行平均。但是使用所有的模型集成进行预测是比较麻烦的,并且可能计算量太大而无法部署到大量用户。Knowledge Distillation(知识蒸馏)[8]方法就是应对这种问题的有效方法之一。

在知识蒸馏方法中,我们使用一个教师模型来帮助当前的模型(学生模型)训练。教师模型是一个较高准确率的预训练模型,因此学生模型可以在保持模型复杂度不变的情况下提升准确率。比如,可以使用ResNet-152作为教师模型来帮助学生模型ResNet-50训练。在训练过程中,我们会加一个蒸馏损失来惩罚学生模型和教师模型的输出之间的差异。

给定输入,假定p是真正的概率分布,z和r分别是学生模型和教师模型最后一个全连接层的输出。之前我们会用交叉熵损失l(p,softmax(z))来度量p和z之间的差异,这里的蒸馏损失同样用交叉熵。所以,使用知识蒸馏方法总的损失函数是

上式中,第一项还是原来的损失函数,第二项是添加的用来惩罚学生模型和教师模型输出差异的蒸馏损失。其中,T是一个温度超参数,用来使softmax的输出更加平滑的。实验证明,用ResNet-152作为教师模型来训练ResNet-50,可以提高后者的准确率。

6. Cutout

Cutout[9]是一种新的正则化方法。原理是在训练时随机把图片的一部分减掉,这样能提高模型的鲁棒性。它的来源是计算机视觉任务中经常遇到的物体遮挡问题。通过cutout生成一些类似被遮挡的物体,不仅可以让模型在遇到遮挡问题时表现更好,还能让模型在做决定时更多地考虑环境(context)。

import torch
import numpy as np
class Cutout(object):
    """Randomly mask out one or more patches from an image.
    Args:
        n_holes (int): Number of patches to cut out of each image.
        length (int): The length (in pixels) of each square patch.
    """
    def __init__(self, n_holes, length):
        self.n_holes = n_holes
        self.length = length
    def __call__(self, img):
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W).
        Returns:
            Tensor: Image with n_holes of dimension length x length cut out of it.
        """
        h = img.size(1)
        w = img.size(2)
        mask = np.ones((h, w), np.float32)
        for n in range(self.n_holes):
            y = np.random.randint(h)
            x = np.random.randint(w)
            y1 = np.clip(y - self.length // 2, 0, h)
            y2 = np.clip(y + self.length // 2, 0, h)
            x1 = np.clip(x - self.length // 2, 0, w)
            x2 = np.clip(x + self.length // 2, 0, w)
            mask[y1: y2, x1: x2] = 0.
        mask = torch.from_numpy(mask)
        mask = mask.expand_as(img)
        img = img * mask
        return img

 7. Random erasing

Random erasing[6]其实和cutout非常类似,也是一种模拟物体遮挡情况的数据增强方法。区别在于,cutout是把图片中随机抽中的矩形区域的像素值置为0,相当于裁剪掉,random erasing是用随机数或者数据集中像素的平均值替换原来的像素值。而且,cutout每次裁剪掉的区域大小是固定的,Random erasing替换掉的区域大小是随机的。

from __future__ import absolute_import
from torchvision.transforms import *
from PIL import Image
import random
import math
import numpy as np
import torch
class RandomErasing(object):
    '''
    probability: The probability that the operation will be performed.
    sl: min erasing area
    sh: max erasing area
    r1: min aspect ratio
    mean: erasing value
    '''
    def __init__(self, probability = 0.5, sl = 0.02, sh = 0.4, r1 = 0.3, mean=[0.4914, 0.4822, 0.4465]):
        self.probability = probability
        self.mean = mean
        self.sl = sl
        self.sh = sh
        self.r1 = r1
    def __call__(self, img):
        if random.uniform(0, 1) > self.probability:
            return img
        for attempt in range(100):
            area = img.size()[1] * img.size()[2]
            target_area = random.uniform(self.sl, self.sh) * area
            aspect_ratio = random.uniform(self.r1, 1/self.r1)
            h = int(round(math.sqrt(target_area * aspect_ratio)))
            w = int(round(math.sqrt(target_area / aspect_ratio)))
            if w < img.size()[2] and h < img.size()[1]:
                x1 = random.randint(0, img.size()[1] - h)
                y1 = random.randint(0, img.size()[2] - w)
                if img.size()[0] == 3:
                    img[0, x1:x1+h, y1:y1+w] = self.mean[0]
                    img[1, x1:x1+h, y1:y1+w] = self.mean[1]
                    img[2, x1:x1+h, y1:y1+w] = self.mean[2]
                else:
                    img[0, x1:x1+h, y1:y1+w] = self.mean[0]
                return img
        return img

8.  Cosine learning rate decay

在warmup之后的训练过程中,学习率不断衰减是一个提高精度的好方法。其中有step decay和cosine decay等,前者是随着epoch增大学习率不断减去一个小的数,后者是让学习率随着训练过程曲线下降。

对于cosine decay,假设总共有T个batch(不考虑warmup阶段),在第t个batch时,学习率 \eta t为:

这里,η代表初始设置的学习率。这种学习率递减的方式称之为cosine decay。

下面是带有warmup的学习率衰减的可视化图[4]。其中,图(a)是学习率随epoch增大而下降的图,可以看出cosine decay比step decay更加平滑一点。图(b)是准确率随epoch的变化图,两者最终的准确率没有太大差别,不过cosine decay的学习过程更加平滑。

 在pytorch的torch.optim.lr_scheduler中有更多的学习率衰减的方法,至于哪个效果好,可能对于不同问题答案是不一样的。对于step decay,使用方法如下:

# Assuming optimizer uses lr = 0.05 for all groups
# lr = 0.05     if epoch < 30
# lr = 0.005    if 30 <= epoch < 60
# lr = 0.0005   if 60 <= epoch < 90
from torch.optim.lr_scheduler import StepLR
scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
for epoch in range(100):
    scheduler.step()
    train(...)
    validate(...)

 9. Mixup training

Mixup[10]是一种新的数据增强的方法。Mixup training,就是每次取出2张图片,然后将它们线性组合,得到新的图片,以此来作为新的训练样本,进行网络的训练,如下公式,其中x代表图像数据,y代表标签,则得到的新的\hat{x}\hat{y}

其中,λ是从Beta(α, α)随机采样的数,在[0,1]之间。在训练过程中,仅使用(  ,  )。

Mixup方法主要增强了训练样本之间的线性表达,增强网络的泛化能力,不过mixup方法需要较长的时间才能收敛得比较好。

for (images, labels) in train_loader:
    l = np.random.beta(mixup_alpha, mixup_alpha)
    index = torch.randperm(images.size(0))
    images_a, images_b = images, images[index]
    labels_a, labels_b = labels, labels[index]
    mixed_images = l * images_a + (1 - l) * images_b
    outputs = model(mixed_images)
    loss = l * criterion(outputs, labels_a) + (1 - l) * criterion(outputs, labels_b)
    acc = l * accuracy(outputs, labels_a)[0] + (1 - l) * accuracy(outputs, labels_b)[0]

 10. AdaBound

AdaBound是最近一篇论文[5]中提到的,按照作者的说法,AdaBound会让你的训练过程像adam一样快,并且像SGD一样好。如下图所示,使用AdaBound会收敛速度更快,过程更平滑,结果更好。

 另外,这种方法相对于SGD对超参数的变化不是那么敏感,也就是说鲁棒性更好。但是,针对不同的问题还是需要调节超参数的,只是所用的时间可能变少了。

当然,AdaBound还没有经过普遍的检验,也有可能只是对于某些问题效果好。

使用方法如下:安装AdaBound

pip install adabound

使用AdaBound(和其他PyTorch optimizers用法一致)

optimizer = adabound.AdaBound(model.parameters(), lr=1e-3, final_lr=0.1)

 11. AutoAugment

数据增强在图像分类问题上有很重要的作用,但是增强的方法有很多,并非一股脑地用上所有的方法就是最好的。那么,如何选择最佳的数据增强方法呢?AutoAugment[11]就是一种搜索适合当前问题的数据增强方法的方法。该方法创建一个数据增强策略的搜索空间,利用搜索算法选取适合特定数据集的数据增强策略。此外,从一个数据集中学到的策略能够很好地迁移到其它相似的数据集上。

12. 其他经典的tricks

常用的正则化方法为

  • Dropout

  • L1/L2正则

  • Batch Normalization

  • Early stopping

  • Random cropping

  • Mirroring

  • Rotation

  • Color shifting

  • PCA color augmentation

其他

  • Xavier init[12]

参考文献

  • [1] Deep Residual Learning for Image Recognition(https://arxiv.org/pdf/1512.03385.pdf)

  • [2] http://cs231n.github.io/neural-networks-2/

  • [3] Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour(https://arxiv.org/pdf/1706.02677v2.pdf)

  • [4] Rethinking the Inception Architecture for Computer Vision(https://arxiv.org/pdf/1512.00567v3.pdf)

  • [4]Bag of Tricks for Image Classification with Convolutional Neural Networks(https://arxiv.org/pdf/1812.01187.pdf)

  • [5] Adaptive Gradient Methods with Dynamic Bound of Learning Rate(https://www.luolc.com/publications/adabound/)

  • [6] Random erasing(https://arxiv.org/pdf/1708.04896v2.pdf)

  • [7] RICAP(https://arxiv.org/pdf/1811.09030.pdf)

  • [8] Distilling the Knowledge in a Neural Network(https://arxiv.org/pdf/1503.02531.pdf)

  • [9] Improved Regularization of Convolutional Neural Networks with Cutout(https://arxiv.org/pdf/1708.04552.pdf)

  • [10] Mixup: BEYOND EMPIRICAL RISK MINIMIZATION(https://arxiv.org/pdf/1710.09412.pdf)

  • [11] AutoAugment: Learning Augmentation Policies from Data(https://arxiv.org/pdf/1805.09501.pdf)

  • [12] Understanding the difficulty of training deep feedforward neural networks(http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/103491.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Http长连接同一个socket多个请求和响应如何保证一一对应?

HTTP/2引入二进制数据帧和流的概念&#xff0c;其中帧对数据进行顺序标识&#xff0c;如下图所示&#xff0c;这样浏览器收到数据之后&#xff0c;就可以按照序列对数据进行合并&#xff0c;而不会出现合并后数据错乱的情况。同样是因为有了序列&#xff0c;服务器就可以并行的…

从REST到GraphQL:升级你的Apollo体验

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 「推荐专栏」&#xff1a; ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄&#xff0c;vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…

【Java系列】ArrayList

ArrayList 添加元素访问元素修改元素删除元素计算大小迭代数组列表其他的引用类型ArrayList 排序Java ArrayList 方法系列文章系列文章版本记录 引言 ArrayList 类是一个可以动态修改的数组&#xff0c;与普通数组的区别就是它是没有固定大小的限制&#xff0c;我们可以添加或删…

Guava-RateLimiter详解

简介&#xff1a; 常用的限流算法有漏桶算法和令牌桶算法&#xff0c;guava的RateLimiter使用的是令牌桶算法&#xff0c;也就是以固定的频率向桶中放入令牌&#xff0c;例如一秒钟10枚令牌&#xff0c;实际业务在每次响应请求之前都从桶中获取令牌&#xff0c;只有取到令牌的请…

structs2 重构成SpringBoot架构

structs2 重构成SpringBoot架构 目录参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;skip hardness,make a better result,wait for change,challenge Survive. happy for hardess to solve den…

JAVA电商平台免费搭建 B2B2C商城系统 多用户商城系统 直播带货 新零售商城 o2o商城 电子商务 拼团商城 分销商城

涉及平台 平台管理、商家端&#xff08;PC端、手机端&#xff09;、买家平台&#xff08;H5/公众号、小程序、APP端&#xff08;IOS/Android&#xff09;、微服务平台&#xff08;业务服务&#xff09; 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis …

vue如何使用冻结对象提升代码效率及其原理解析

先给大家伙整个实际工作中一定会碰到的问题 如下vue dome ,它的代码非常简单功能也1非常简单,就是一个按钮,点击后会显示有多少条数据 来看看源码, html部分就是一个按钮绑定了一个loadData事件,然后在p标签内展示了这个myData这个数据的长度 <template><div id&quo…

竞赛选题 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐…

知识图谱+推荐系统 文献阅读

文献阅读及整理 知识图谱推荐系统 知识图谱 1 基于知识图谱的电商领域智能问答系统研究与实现 [1]蒲海坤. 基于知识图谱的电商领域智能问答系统研究与实现[D].西京学院,2022.DOI:10.27831/d.cnki.gxjxy.2021.000079. 知识点 BIO标记策略进行人工标记,构建了电商领域商品…

嚼一嚼Halcon中的3D手眼标定

文章目录 一、问题概述1、何为手眼标定&#xff1f;2、手眼标定的2种形式1&#xff09;眼在手上&#xff08;eye in hand&#xff09;&#xff1a;即相机固定在机械臂末端2&#xff09;眼在手外&#xff08;eye to hand&#xff09;&#xff1a;即相机固定在机械臂以外的地方 3…

2023年中国条装漱口水市场发展趋势分析: 便携式条装漱口水发展势头强劲[图]

漱口水已在欧美发达国家流行多年&#xff0c;可能和社交生活礼仪有很大关系。近年来&#xff0c;由于市场竞争激烈&#xff0c;漱口水除了使口气清新&#xff0c;以及宣称可消除口臭的细菌&#xff0c;着重强调其预防和治疗牙齿及口腔疾病&#xff0c;增进口腔健康的功能的产品…

Mysql第四篇---数据库索引优化与查询优化

文章目录 数据库索引优化与查询优化索引失效案例数据准备1. 全值匹配2 最佳左前缀法则(联合索引)主键插入顺序4 计算、函数导致索引失效5 类型转换(自动或手动)导致索引失效6 范围条件右边的列索引失效7 不等于(!或者<>)索引失效8 is null可以使用索引, is not null无法使…

工程管理系统简介 工程管理系统源码 java工程管理系统 工程管理系统功能设计

工程项目管理软件&#xff08;工程项目管理系统&#xff09;对建设工程项目管理组织建设、项目策划决策、规划设计、施工建设到竣工交付、总结评估、运维运营&#xff0c;全过程、全方位的对项目进行综合管理 工程项目各模块及其功能点清单 一、系统管理 1、数据字典&am…

机器学习(新手入门)-线性回归 #房价预测

题目&#xff1a;给定数据集dataSet&#xff0c;每一行代表一组数据记录,每组数据记录中&#xff0c;第一个值为房屋面积&#xff08;单位&#xff1a;平方英尺&#xff09;&#xff0c;第二个值为房屋中的房间数&#xff0c;第三个值为房价&#xff08;单位&#xff1a;千美元…

Ai写作创作系统ChatGPT网站源码+图文搭建教程+支持GPT4.0+支持ai绘画(Midjourney)/支持OpenAI GPT全模型+国内AI全模型

一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统AI绘画系统&#xff0c;支持OpenAI GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署…

SpringBoot 实体参数(用于请求参数比较多时使用)

字段必须和传参时一致&#xff0c;否则为null&#xff0c; 使用AITINS可以快速生成&#xff0c;SET GET方法 public class User {//字段必须和传参时一致&#xff0c;否则为nullprivate String user;private String password;public String getUser() {return user;}public vo…

openGauss学习笔记-108 openGauss 数据库管理-管理用户及权限-用户

文章目录 openGauss学习笔记-108 openGauss 数据库管理-管理用户及权限-用户108.1 创建、修改和删除用户108.2 私有用户108.3 永久用户108.4 用户认证优先规则 openGauss学习笔记-108 openGauss 数据库管理-管理用户及权限-用户 使用CREATE USER和ALTER USER可以创建和管理数据…

DLT645转modbus协议网关采集电表的数据方法

DLT645有两个版本分别是DLT645-97和DLT645-07&#xff0c;该协议主要用于电表抄表&#xff0c;采用为主-从结构的半双工通讯模式&#xff0c;硬件接口使用RS-485今天我们来看下&#xff0c;用远创智控YC-645-TCP网关如何采集电表的数据 1&#xff0c;首先&#xff0c;我们需要…

安科瑞余压监控系统

安科瑞 崔丽洁 机械加压送风系统中为什么要设计旁通阀控制加压送风的正压值&#xff1f;火灾发生后&#xff0c;又能起到什么作用呢&#xff1f; 发生火灾时&#xff0c;绝大多数的人员伤亡不是因为火&#xff0c;而是烟气&#xff0c;随着可燃物的燃烧产生大量的高温烟气&…