opencv 案例05-基于二值图像分析(简单缺陷检测)

缺陷检测,分为两个部分,一个部分是提取指定的轮廓,第二个部分通过对比实现划痕检测与缺角检测。本次主要搞定第一部分,学会观察图像与提取图像ROI对象轮廓外接矩形与轮廓。

下面是基于二值图像分析的大致流程

  1. 读取图像
  2. 将图像转换为灰度图,并对其进行二值化处理。
# 图像二值化
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | 
  1. 进行形态学开运算以去除噪声和平滑图像。
cv.THRESH_OTSU)
# 形态学开运算去除噪声和平滑图像
se = cv.getStructuringElement(cv.MORPH_RECT, (3, 3), (-1, -1))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, se)
cv.imshow("binary", binary)

在这里插入图片描述

  1. 提取图像中的轮廓。
# 提取图像中的轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)

  1. 针对每个轮廓,计算其外接矩形,并根据一些条件绘制矩形和轮廓。
height, width = src.shape[:2]
for c in range(len(contours)):
    x, y, w, h = cv.boundingRect(contours[c])
    area = cv.contourArea(contours[c])
    # 根据条件过滤不符合要求的轮廓
    if h > (height//2):
        continue
    if area < 150:
        continue
    cv.rectangle(src, (x, y), (x+w, y+h), (0, 0, 255), 1, 8, 0)
    cv.drawContours(src, contours, c, (0, 255, 0), 2, 8)

整理示例:检测图片中的缺陷并将缺陷框选出来

原图:

在这里插入图片描述

代码如下:

import cv2 as cv


src = cv.imread("que01.jpg")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)

# 图像二值化
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
# 形态学开运算去除噪声和平滑图像
se = cv.getStructuringElement(cv.MORPH_RECT, (3, 3), (-1, -1))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, se)
cv.imshow("binary", binary)

# 提取图像中的轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)

height, width = src.shape[:2]
for c in range(len(contours)):
    x, y, w, h = cv.boundingRect(contours[c])
    area = cv.contourArea(contours[c])
    # 根据条件过滤不符合要求的轮廓
    if h > (height//2):
        continue
    if area < 150:
        continue
    cv.rectangle(src, (x, y), (x+w, y+h), (0, 0, 255), 1, 8, 0)
    cv.drawContours(src, contours, c, (0, 255, 0), 2, 8)

cv.imshow("result", src)
cv.imwrite("binary2.png", src)

cv.waitKey(0)
cv.destroyAllWindows()

运行结果如下:

在这里插入图片描述

示例2:
原图:

在这里插入图片描述

修改上面的图片路径地址运行看效果

在这里插入图片描述

对于明显的缺陷检测还是可以的,但是实际生产的缺陷肯定不是这么明显的,如下图:

在这里插入图片描述

后续讲解这类的缺陷该如何检测,敬请期待!!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/97107.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C/C++ 个人笔记

仅供个人复习&#xff0c; C语言IO占位符表 %d十进制整数(int)%ldlong%lldlong long%uunsigned int%o八进制整型%x十六进制整数/字符串地址%c单个字符%s字符串%ffloat&#xff0c;默认保留6位%lfdouble%e科学计数法%g根据大小自动选取f或e格式&#xff0c;去掉无效0 转义符表…

LeetCode第6~10题解

CONTENTS LeetCode 6. N 字形变换&#xff08;中等&#xff09;LeetCode 7. 整数反转&#xff08;中等&#xff09;LeetCode 8. 字符串转换整数-atoi&#xff08;中等&#xff09;LeetCode 9. 回文数&#xff08;简单&#xff09;LeetCode 10. 正则表达式匹配&#xff08;困难&…

Flutter 混合开发调试

针对Flutter开发的同学来说&#xff0c;大部分的应用还是Native Flutter的混合开发&#xff0c;所以每次改完Flutter代码&#xff0c;运行整个项目无疑是很费时间的。所以Flutter官方也给我们提供了混合调试的方案【在混合开发模式下进行调试】&#xff0c;这里以Android Stud…

VUE笔记(四)vue的组件

一、组件的介绍 1、组件的作用 整个项目都是由组件组成 可以让代码复用&#xff1a;相似结构代码可以做成一个组件&#xff0c;直接进行调用就可以使用&#xff0c;提高代码复用性 可以让代码具有可维护性&#xff08;只要改一处&#xff0c;整个引用的部分全部都变&#xf…

Java8实战-总结17

Java8实战-总结17 引入流流操作中间操作终端操作使用流 小结 引入流 流操作 java.util.stream.Stream中的Stream接口定义了许多操作。它们可以分为两大类。再来看一下前面的例子&#xff1a; List<String> names menu.stream() //从菜单获得流 .filter(d -> d.get…

SpringBoot - Google EventBus、AsyncEventBus

介绍 EventBus 顾名思义&#xff0c;事件总线&#xff0c;是一个轻量级的发布/订阅模式的应用模式&#xff0c;最初设计及应用源与 google guava 库。 相比于各种 MQ 中间件更加简洁、轻量&#xff0c;它可以在单体非分布式的小型应用模块内部使用&#xff08;即同一个JVM范围…

xml和json互转工具类

分享一个json与xml互转的工具类&#xff0c;非常好用 一、maven依赖 <!-->json 和 xm 互转</!--><dependency><groupId>org.dom4j</groupId><artifactId>dom4j</artifactId><version>2.1.3</version></dependency&g…

图形化管理工具ossbrowser

文章目录 一、OSS介绍二、通过工具管理OSS三、安装四、使用-通过AK五、免责声明摘抄 一、OSS介绍 云对象存储OSS&#xff08;Object Storage Service&#xff09;是一款海量、安全、低成本、高可靠的云存储服务&#xff0c;可提供99.9999999999%&#xff08;12个9&#xff09;…

Javaweb入门

Spring Spring发展到今天已经形成一种开发生态圈&#xff0c;Spring提供若干个子项目&#xff0c;每个项目用于完成特定的功能。 Spring Boot可以帮助我们非常快速的构建应用程序、简化开发、提高效率 SpringBootWeb入门 需求&#xff1a;使用Spring Boot开发一个web应用&a…

结构体(个人学习笔记黑马学习)

1、结构体的定义和使用 #include <iostream> using namespace std; #include <string>struct Student {string name;int age;int score; }s3;int main() {//1、struct Student s1;s1.name "张三";s1.age 18;s1.score 100;cout << "姓名&a…

便携式水质自动采样器可应用的场景

便携式水质自动采样器符合中国环境保护部HJ/T 372-2007《水质自动采样器技术要求及检测方法》&#xff0c;是集流量测量、水样采集&#xff0c;自动分瓶、一体的多功能环境监测仪器。 具有体积小&#xff0c;方便移动、操作简捷、环保节能等特点。适用于各级环境监测站、监察机…

go vet中的那些检测项

go vet 是 Go 语言自带的一个工具&#xff0c;用于分析 Go 代码中的常见错误和潜在问题。它可以检查代码中可能存在的各种问题&#xff0c;例如&#xff1a; 未使用的变量、函数或包 可疑的函数调用 错误的函数签名 程序中的竞态条件 错误的类型转换等 本文意图指令当前go vet所…

【VUE】数字动态变化到目标值-vue-count-to

vue-count-to是一个Vue组件&#xff0c;用于实现数字动画效果。它可以用于显示从一个数字到另一个数字的过渡动画。 插件名&#xff1a;vue-count-to 官方仓库地址&#xff1a;GitHub - PanJiaChen/vue-countTo: Its a vue component that will count to a target number at a…

VueX 与Pinia 一篇搞懂

VueX 简介 Vue官方&#xff1a;状态管理工具 状态管理是什么 需要在多个组件中共享的状态、且是响应式的、一个变&#xff0c;全都改变。 例如一些全局要用的的状态信息&#xff1a;用户登录状态、用户名称、地理位置信息、购物车中商品、等等 这时候我们就需要这么一个工…

【二等奖方案】大规模金融图数据中异常风险行为模式挖掘赛题「Aries」解题思路

第十届CCF大数据与计算智能大赛&#xff08;2022 CCF BDCI&#xff09;已圆满结束&#xff0c;大赛官方竞赛平台DataFountain&#xff08;简称DF平台&#xff09;正在陆续释出各赛题获奖队伍的方案思路&#xff0c;欢迎广大数据科学家交流讨论。 本方案为【大规模金融图数据中…

查局域网所有占用IP

查局域网所有占用IP 按&#xff1a;winr 出现下面界面&#xff0c;在文本框中输入 cmd 按确定即可出现cmd命令界面 在cmd命令窗口输入你想要ping的网段&#xff0c;下面192.168.20.%i即为你想要ping的网段&#xff0c;%i代表0-255 for /L %i IN (1,1,254) DO ping -w 1 -n 1…

尚硅谷SpringMVC

五、域对象共享数据 1、使用ServletAPI向request域对象共享数据 首页&#xff1a; Controller public class TestController {RequestMapping("/")public String index(){return "index";} } <!DOCTYPE html> <html lang"en" xmln…

十五、模板方法模式

一、什么是模板方法模式 模板方法&#xff08;Template Method&#xff09;模式的定义如下&#xff1a;定义一个操作中的算法骨架&#xff0c;而将算法的一些步骤延迟到子类中&#xff0c;使得子类可以不改变该算法结构的情况下重定义该算法的某些特定步骤。 模板方法模式包含以…

Sharding-JDBC(九)5.3.0版本,实现按月分表、自动建表、自动刷新节点

目录 一、简介二、Maven依赖三、配置文件application.ymlsharding.yaml 四、代码实现1.自动建表、自动刷新节点思路2.创建表结构3.TimeShardingAlgorithm.java 分片算法类4.ShardingAlgorithmTool.java 分片工具类5.ShardingTablesLoadRunner.java 初始化缓存类6.SpringUtil.ja…