SQLModel入门

目录

  • 概述
  • 快速开始
  • 官方教程
  • 简单使用样例

概述

SQLModel 是一个 ORM 框架,其基于 SQLAlchemy 和 Pydantic,其中 SQLALchemy 提供底层 ORM 能力,Pydantic 提供类型校验能力,SQLModel 中,一个 SQLModel model 既是一个 SQLAlchemy model 也是一个 Pydantic model。

SQLModel 的优势在于解决了 Python Web 开发中最大的痛点之一,ORM model 与 view model 重复问题。

通常,无论任何语言,Web 开发会将代码分层,常见的是分为三层:

  1. controller 层:将 view model 返回给前端,view model 是要返回的数据,会在这个层对入参或者出参进行参数校验,参数校验通常会定义一个 view model,view model 中定义各种参数限制
  2. service 层:是业务在代码层面的具体实现
  3. dao 层:负责与数据库交互,与具体业务无关,会使用 ORM 框架,定义一个一个 ORM model

从数据库查询数据,查询出来是一个 ORM model 对象,操作这个 ORM model 对象就相当于操作数据库,然而要返回的数据不会是一个单纯的 ORM model,通常是 ORM model 中的数据以及其他数据共同组成的一团数据,通常,会将 ORM nmodel 转为 dict 而后整体合并数据。等到要返回数据时,再将 dict 数据转为 view model 数据,最后由框架处理 view model 并将其返回(通常转为json后返回)。

上面的问题在于,controller 层与 dao 层都需要一个model,service 还要做合并,导致每两层之间必须都要做一次转换。

SQLModel 解决了这一问题,SQLModel 中,一个 SQLModel model 既是一个 SQLAlchemy model 也是一个 Pydantic model,由此将 controller 层 view model 和 dao 层 ORM model 统一,由此 service 层也可考虑使用 Pydantic model,或者还是使用 dict,Pydantic 原生支持转 dict。

快速开始

pip install sqlmodel

样例

from typing import Optional

from sqlmodel import Field, Session, SQLModel, create_engine


# 对应数据库中一张表。继承 SQLModel,写明 table=True
class Hero(SQLModel, table=True):
    id: Optional[int] = Field(default=None, primary_key=True)
    name: str
    secret_name: str
    age: Optional[int] = None


# create_engine,是间接引用 SQLAlchemy 中的 create_engine 函数
engine = create_engine("mysql+pymysql://root:mYsql123456_@127.0.0.1:3306/dev")

# 创建表
SQLModel.metadata.create_all(engine)

# 创建 model 对象,既是 SQLAlchemy model 对象,也是 Pydantic 对象
hero_1 = Hero(name="Deadpond", secret_name="Dive Wilson")
hero_2 = Hero(name="Spider-Boy", secret_name="Pedro Parqueador")
hero_3 = Hero(name="Rusty-Man", secret_name="Tommy Sharp", age=48)

# 插入数据,Session 是 sqlalchemy.orm.Session 的子类
with Session(engine) as session:
    session.add(hero_1)
    session.add(hero_2)
    session.add(hero_3)
    session.commit()

官方教程

https://github.com/fastapi/sqlmodel
https://sqlmodel.tiangolo.com/learn/
https://sqlmodel.fastapi.org.cn/learn/

简单使用样例

import datetime

from sqlmodel import Field, BigInteger, Integer, String, Boolean, DateTime, JSON, Session, insert, update, select, delete
from sqlmodel import SQLModel, create_engine


class BaseModel(SQLModel):
    id: int | None = Field(description="主键id", primary_key=True, sa_type=BigInteger,
                           sa_column_kwargs=dict(comment="主键id"))
    is_delete: bool = Field(default=False, description="是否逻辑删除", sa_type=Boolean,
                            sa_column_kwargs=dict(comment="是否逻辑删除"))
    updated_time: datetime.datetime | None = Field(description="更新时间", sa_type=DateTime,
                                                   sa_column_kwargs=dict(
                                                       comment="更新时间", onupdate=datetime.datetime.now,
                                                       server_onupdate=""))
    created_time: datetime.datetime | None = Field(default_factory=datetime.datetime.now, description="创建时间",
                                                   sa_type=DateTime,
                                                   sa_column_kwargs=dict(comment="创建时间"))


class User(BaseModel, table=True):  # 只有 table=True 的 model 会被创建为表
    __tablename__ = "tb_user"
    # 两个 32,一个用于 SQLAlchemy,一个用于 Pydantic
    name: str = Field(sa_type=String(32), max_length=32, sa_column_kwargs=dict(comment="用户名"))
    age: int = Field(sa_type=Integer, default=0, ge=0, le=200, sa_column_kwargs=dict(comment="年龄"))
    addresses: list[str] = Field(sa_type=JSON, default=[], sa_column_kwargs=dict(comment="地址列表"))
    other: dict = Field(sa_type=JSON, default={}, sa_column_kwargs=dict(comment="附加信息"))


engine = create_engine("mysql+pymysql://root:mYsql123456_@127.0.0.1:3306/dev")
SQLModel.metadata.create_all(engine)
session = Session(engine)

with session.begin():
    entity = User(name="张三", age=16, addresses=["beijing", "shanghai"])
    session.add(entity)

with session.begin():
    entity = User(name="张三", age=16, addresses=["beijing", "shanghai"])
    statement = insert(User).values(entity.model_dump(exclude_none=True))  # 使用pydantic转换成字典(排除None是避免id传入None报错)
    session.exec(statement)

with session.begin():
    entity = User(id=5, name="赵四", age=17, addresses=["beijing"])
    statement = update(User).where(User.id == 5).values(entity.model_dump())
    session.exec(statement)

with session.begin():
    statement = select(User).where(User.name == "赵四")
    result = session.exec(statement).all()
    print(result)

with session.begin():
    statement = delete(User).where(User.id == 6)
    session.exec(statement)

以使用者的角度看,SQLModel 整体上对 Pydantic 和 SQLAlchemy 有了一个大致封装,但是目前 v0.0.22 版本中有很多细节感觉做的不够细致导致有一种Pydantic 和 SQLAlchemy 简单缝合的感觉,比如一些类型提示不兼容导致静态检查报错,一些 SQLModel 中的 SQLALchemy 参数比较含糊,需要到 SQLAlachemy 中寻找具体参数进行补充。不过不影响具体执行。Python 生态中需要一个 view model 与 ORM model 统一的框架,静待这个库成熟。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/963111.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

利用metaGPT多智能体框架实现智能体-1

1.metaGPT简介 MetaGPT 是一个基于大语言模型(如 GPT-4)的多智能体协作框架,旨在通过模拟人类团队的工作模式,让多个 AI 智能体分工合作,共同完成复杂的任务。它通过赋予不同智能体特定的角色(如产品经理、…

当WebGIS遇到智慧文旅-以长沙市不绕路旅游攻略为例

目录 前言 一、旅游数据组织 1、旅游景点信息 2、路线时间推荐 二、WebGIS可视化实现 1、态势标绘实现 2、相关位置展示 三、成果展示 1、第一天旅游路线 2、第二天旅游路线 3、第三天旅游路线 4、交通、订票、住宿指南 四、总结 前言 随着信息技术的飞速发展&…

windows10 配置使用json server作为图片服务器

步骤1:在vs code中安装json server, npm i -g json-server 注意:需要安装对应版本的json server,不然可能会报错,比如: npm i -g json-server 0.16.3 步骤2:出现如下报错: json-server 不是…

洛谷 P1164 小A点菜 C语言

P1164 小A点菜 - 洛谷 | 计算机科学教育新生态 题目背景 uim 神犇拿到了 uoi 的 ra(镭牌)后,立刻拉着基友小 A 到了一家……餐馆,很低端的那种。 uim 指着墙上的价目表(太低级了没有菜单),说&…

向上调整算法(详解)c++

算法流程: 与⽗结点的权值作⽐较,如果⽐它⼤,就与⽗亲交换; 交换完之后,重复 1 操作,直到⽐⽗亲⼩,或者换到根节点的位置 这里为什么插入85完后合法? 我们插入一个85,…

50. 正点原子官方系统镜像烧写实验

一、Windows下使用OTG烧写系统 1、在Windos使用NXP提供的mfgtool来向开发烧写系统。需要用先将开发板的USB_OTG接口连接到电脑上。 Mfgtool工具是向板子先下载一个Linux系统,然后通过这个系统来完成烧写工作。 切记!使用OTG烧写的时候要先把SD卡拔出来&…

AI智能化模型助力太阳能光伏板自动巡检运维,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统

随着全球科技和能源领域的飞速发展,清洁新能源,尤其是太阳能,正以前所未有的速度融入我们的日常生活。太阳能光伏板作为转换太阳能为电能的关键设备,其普及程度日益提高,从偏远乡村到繁华都市,无处不在地展…

深度学习 DAY3:NLP发展史

NLP发展史 NLP发展脉络简要梳理如下: (远古模型,上图没有但也可以算NLP) 1940 - BOW(无序统计模型) 1950 - n-gram(基于词序的模型) (近代模型) 2001 - Neural language models&am…

FireFox | Google Chrome | Microsoft Edge 禁用更新 final版

之前的方式要么失效,要么对设备有要求,这次梳理一下对设备、环境几乎没有要求的通用方式,universal & final 版。 1.Firefox 方式 FireFox火狐浏览器企业策略禁止更新_火狐浏览器禁止更新-CSDN博客 这应该是目前最好用的方式。火狐也…

【问题记录】DeepSeek本地部署遇到问题

详细的部署过程以及原理,各位大佬已经解释的很详细了,这里不重复只是记录过程中遇到的一个问题。 本地部署 DeepSeek-R1 模型全攻略 - 王浩宇的博客) 问题详情 Error: Post "http://127.0.0.1:11434/api/show": read tcp 127.0.0.1:57395-&g…

【react-redux】react-redux中的 useDispatch和useSelector的使用与原理解析

一、useSelector 首先,useSelector的作用是获取redux store中的数据。 下面就是源码,感觉它的定义就是首先是createSelectorHook这个方法先获得到redux的上下文对象。 然后从上下文对象中获取store数据。然后从store中得到选择的数据。 2、useDispatc…

可视化相机pose colmap形式的相机内参外参

目录 内参外参转换 可视化相机pose colmap形式的相机内参外参 内参外参转换 def visualize_cameras(cameras, images):fig plt.figure()ax fig.add_subplot(111, projection3d)for image_id, image_data in images.items():qvec image_data[qvec]tvec image_data[tvec]#…

Python sider-ai-api库 — 访问Claude、llama、ChatGPT、gemini、o1等大模型API

目前国内少有调用ChatGPT、Claude、Gemini等国外大模型API的库。 Python库sider_ai_api 提供了一个完整的解决方案。通过调用 sider.ai 的API,开发者可以实现对这些大模型的访问。 众所周知,sider是一个Chrome,以及Edge的浏览器插件&#xf…

FreeRTOS学习笔记2:FreeRTOS的基础知识

1.FreeRTOS介绍 FreeRTOS是一个免费的嵌入式实时操作系统,同时它在市面上也是一款主流的操作系统,是工作上必不可少的技能。它具有以下六种特点: 1.免费开源:在商业产品中使用,无潜在商业风险,无需担心。 2…

TensorFlow 简单的二分类神经网络的训练和应用流程

展示了一个简单的二分类神经网络的训练和应用流程。主要步骤包括: 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与部署 加载和应用已训练的模型 1. 数据准备与预处理 在本例中,数据准备是通过两个 Numpy 数…

【B站保姆级视频教程:Jetson配置YOLOv11环境(四)cuda cudnn tensorrt配置】

Jetson配置YOLOv11环境(4)cuda cudnn tensorrt配置 文章目录 0. 简介1. cuda配置:添加cuda环境变量2. cudnn配置3. TensorRT Python环境配置3.1 系统自带Python环境中的TensorRT配置3.2 Conda 虚拟Python环境中的TensorRT配置 0. 简介 官方镜…

Python安居客二手小区数据爬取(2025年)

目录 2025年安居客二手小区数据爬取观察目标网页观察详情页数据准备工作:安装装备就像打游戏代码详解:每行代码都是你的小兵完整代码大放送爬取结果 2025年安居客二手小区数据爬取 这段时间需要爬取安居客二手小区数据,看了一下相关教程基本…

Electron使用WebAassembly实现CRC-8 MAXIM校验

Electron使用WebAssembly实现CRC-8 MAXIM校验 将C/C语言代码,经由WebAssembly编译为库函数,可以在JS语言环境进行调用。这里介绍在Electron工具环境使用WebAssembly调用CRC-8 MAXIM格式校验的方式。 CRC-8 MAXIM校验函数WebAssebly源文件 C语言实现CR…

DeepSeek-R1:通过强化学习激励大型语言模型(LLMs)的推理能力

摘要 我们推出了第一代推理模型:DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero是一个未经监督微调(SFT)作为初步步骤,而是通过大规模强化学习(RL)训练的模型,展现出卓越的推理能力。通过强…

pytorch基于FastText实现词嵌入

FastText 是 Facebook AI Research 提出的 改进版 Word2Vec,可以: ✅ 利用 n-grams 处理未登录词 比 Word2Vec 更快、更准确 适用于中文等形态丰富的语言 完整的 PyTorch FastText 代码(基于中文语料),包含&#xff1…