【AIGC】语言模型的发展历程:从统计方法到大规模预训练模型的演化


在这里插入图片描述

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳]
本文专栏: AIGC | ChatGPT

文章目录

  • 💯前言
  • 💯语言模型的发展历程:从统计方法到大规模预训练模型的演化
    • 1 统计语言模型(Statistical Language Model, SLM):统计学的起步
    • 2 神经语言模型(Neural Language Model, NLM):深度学习的崛起
    • 3 预训练语言模型(Pre-trained Language Model, PLM):无监督学习的突破
    • 4 大语言模型(Large Language Model, LLM):通用人工智能的曙光
  • 💯小结


在这里插入图片描述


💯前言

  • 随着人工智能技术的飞速发展,机器如何理解和生成自然语言,已经成为人工智能研究中的核心问题之一。语言模型(Language Model, LM)作为自然语言处理的核心技术之一,旨在通过数学模型捕捉语言的内在规律,使计算机能够理解、生成和处理人类语言。语言模型的研究历史不仅涵盖了算法的不断发展,也与计算能力的提升和数据资源的丰富紧密相关。
    本文将详细探讨从早期的统计语言模型到现代的大规模预训练语言模型,回顾语言模型的技术演化,分析关键技术的突破,并通过深入的扩展和示例,帮助读者全面理解语言模型的发展脉络。希望通过本文的介绍,读者能够对语言模型的历史进程、技术背景以及它对自然语言处理领域的深远影响有一个更为清晰的认识。
    如何为GPT-4编写有效Prompt​在这里插入图片描述
    Prompt工程相关文档​
    在这里插入图片描述

💯语言模型的发展历程:从统计方法到大规模预训练模型的演化

语言模型的发展经历了从最初的基于统计的简单模型,到复杂的神经网络模型,再到如今的超大规模预训练模型的漫长过程。每一个阶段的技术创新,都是为了更好地理解、生成和处理自然语言,并为后续的研究和应用提供了更强大的工具。

1 统计语言模型(Statistical Language Model, SLM):统计学的起步

统计语言模型是语言模型发展史上的第一个里程碑。在20世纪90年代,随着计算能力的提升和统计学方法的广泛应用,研究者们开始利用统计方法分析语言的特征,开创了基于统计语言的建模方法。

核心思想:统计语言模型基于马尔可夫假设,利用词与词之间的条件概率进行建模。在这些模型中,假设某个词的出现概率仅依赖于它前面一定数量的词(上下文)。常见的统计语言模型包括n-gram模型,它基于前n个词来预测下一个词。

局限性:虽然统计语言模型为语言建模奠定了基础,但它有几个明显的缺点。首先,n-gram模型依赖于固定长度的上下文,无法有效捕捉长程依赖关系。其次,随着n值的增加,模型的参数数量急剧增长,导致“维数灾难”(Curse of Dimensionality)问题,难以有效处理海量的语料。

示例代码(n-gram模型)

import nltk
from nltk.util import ngrams
from collections import Counter

# 加载文本并进行分词
text = "the quick brown fox jumps over the lazy dog"
tokens = text.split()

# 构建3-gram
trigrams = list(ngrams(tokens, 3))
trigram_freq = Counter(trigrams)

print(trigram_freq)

上述代码展示了如何使用Python的nltk库生成一个简单的3-gram模型,并统计其频率。通过这样的方式,统计语言模型可以为语言处理提供一些基本的词序列概率。

2 神经语言模型(Neural Language Model, NLM):深度学习的崛起

随着深度学习技术的发展,神经语言模型逐渐取代了传统的统计语言模型。神经网络能够通过学习大量数据中的潜在模式,捕捉语言中的复杂关系,特别是在处理长程依赖时,比统计模型表现得更为出色。

核心思想:神经语言模型的核心创新是使用神经网络进行词的表示。传统的词表示方法使用稀疏的独热编码(One-Hot Encoding),这种方法无法有效地表示词汇之间的语义关系。而神经语言模型采用了“词嵌入”(Word Embedding)技术,将词汇映射到低维向量空间,使得相似语义的词在向量空间中的距离较近。

代表性模型word2vec模型是神经语言模型中的一个重要突破,它通过浅层神经网络学习词汇的分布式表示。word2vec通过预测词汇在上下文中的出现概率来学习词向量,这一方法为自然语言处理领域带来了巨大的影响。

示例代码(word2vec模型)

from gensim.models import Word2Vec

# 输入数据,通常使用大规模文本语料库
sentences = [["the", "quick", "brown", "fox"],
             ["jumps", "over", "the", "lazy", "dog"]]

# 训练word2vec模型
model = Word2Vec(sentences, min_count=1)

# 获取“fox”这个词的词向量
vector = model.wv['fox']
print(vector)

上面的代码展示了如何使用Gensim库训练一个简单的word2vec模型,并获取某个词的向量表示。

3 预训练语言模型(Pre-trained Language Model, PLM):无监督学习的突破

预训练语言模型(PLM)是近年来自然语言处理领域的一个重要创新,它的提出彻底改变了自然语言处理任务的解决方式。与传统的模型不同,预训练语言模型通过无监督学习,在大规模的文本数据上进行预训练,学习通用的语言表示,然后通过微调(Fine-Tuning)来适应特定任务。

核心思想:预训练语言模型通过“预训练-微调”这一范式,能够利用大规模无标注文本数据学习语言的基础知识,而微调阶段则通过少量的标注数据来调整模型的权重,使其在特定任务中表现得更好。

代表性模型BERT(Bidirectional Encoder Representations from Transformers)模型是预训练语言模型的典型代表,它通过双向的Transformer架构对上下文信息进行建模,并在大规模语料库上进行无监督训练。BERT的出现标志着预训练模型的强大能力,它在多个NLP任务上刷新了当时的性能记录。

示例代码(BERT模型)

from transformers import BertTokenizer, BertModel

# 加载BERT模型和tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')

# 输入文本
inputs = tokenizer("Hello, how are you?", return_tensors="pt")

# 获取BERT模型的输出
outputs = model(**inputs)
print(outputs.last_hidden_state)

这段代码展示了如何使用Transformers库加载预训练的BERT模型,并获取输入文本的表示。

4 大语言模型(Large Language Model, LLM):通用人工智能的曙光

随着计算能力的提升和数据规模的增长,大语言模型成为了当前自然语言处理的主流。这些模型通常有数十亿甚至数百亿个参数,通过在海量数据上进行训练,展现出了前所未有的能力。

核心思想:大语言模型通过增加参数规模、训练数据量和计算资源,能够在多个任务中展现出超强的通用性。GPT-3是大语言模型的代表之一,它通过自回归的方式生成文本,能够在没有微调的情况下处理多种自然语言任务。

代表性模型GPT-3(Generative Pre-trained Transformer 3)模型拥有1750亿个参数,是目前最强大的语言生成模型之一。GPT-3能够通过上下文学习(In-Context Learning)处理各种任务,如机器翻译、文本生成、推理等。

示例代码(GPT-3模型)

import openai

# 设置OpenAI API密钥
openai.api_key = 'your-api-key'

# 使用GPT-3生成文本
response = openai.Completion.create(
  engine="text-davinci-003",
  prompt="Once upon a time,",
  max_tokens=100
)

print(response.choices[0].text.strip())

这段代码展示了如何使用OpenAI的API调用GPT-3模型生成文本。GPT-3能够理解并生成连贯的段落,展现了其强大的文本生成能力。

💯小结

语言模型的演化历程从最初的统计模型到深度神经网络,再到如今的超大规模预训练模型,展现了人工智能在自然语言处理领域的飞速发展。每一阶段的创新都为后续的发展奠定了坚实的基础,推动了语言模型从解决简单任务到应对复杂任务的能力提升。未来,随着技术的不断进步,语言模型将向更加智能、通用的方向发展,为更多领域带来深远的影响。

通过回顾这一历程,我们可以看到语言模型不仅仅是技术的进步,更是推动人工智能实现更高级认知和决策能力的重要一步。随着多模态学习的兴起,我们可以预见,语言模型将进入一个更加丰富多样的新时代,带来更多前所未有的创新和应用。


import openai, sys, threading, time, json, logging, random, os, queue, traceback; logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"); openai.api_key = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY"); def ai_agent(prompt, temperature=0.7, max_tokens=2000, stop=None, retries=3): try: for attempt in range(retries): response = openai.Completion.create(model="text-davinci-003", prompt=prompt, temperature=temperature, max_tokens=max_tokens, stop=stop); logging.info(f"Agent Response: {response}"); return response["choices"][0]["text"].strip(); except Exception as e: logging.error(f"Error occurred on attempt {attempt + 1}: {e}"); traceback.print_exc(); time.sleep(random.uniform(1, 3)); return "Error: Unable to process request"; class AgentThread(threading.Thread): def __init__(self, prompt, temperature=0.7, max_tokens=1500, output_queue=None): threading.Thread.__init__(self); self.prompt = prompt; self.temperature = temperature; self.max_tokens = max_tokens; self.output_queue = output_queue if output_queue else queue.Queue(); def run(self): try: result = ai_agent(self.prompt, self.temperature, self.max_tokens); self.output_queue.put({"prompt": self.prompt, "response": result}); except Exception as e: logging.error(f"Thread error for prompt '{self.prompt}': {e}"); self.output_queue.put({"prompt": self.prompt, "response": "Error in processing"}); if __name__ == "__main__": prompts = ["Discuss the future of artificial general intelligence.", "What are the potential risks of autonomous weapons?", "Explain the ethical implications of AI in surveillance systems.", "How will AI affect global economies in the next 20 years?", "What is the role of AI in combating climate change?"]; threads = []; results = []; output_queue = queue.Queue(); start_time = time.time(); for idx, prompt in enumerate(prompts): temperature = random.uniform(0.5, 1.0); max_tokens = random.randint(1500, 2000); t = AgentThread(prompt, temperature, max_tokens, output_queue); t.start(); threads.append(t); for t in threads: t.join(); while not output_queue.empty(): result = output_queue.get(); results.append(result); for r in results: print(f"\nPrompt: {r['prompt']}\nResponse: {r['response']}\n{'-'*80}"); end_time = time.time(); total_time = round(end_time - start_time, 2); logging.info(f"All tasks completed in {total_time} seconds."); logging.info(f"Final Results: {json.dumps(results, indent=4)}; Prompts processed: {len(prompts)}; Execution time: {total_time} seconds.")

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/967558.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ArcGIS Pro批量创建离线服务sd包

背景: 主要针对一个工程内有多个地图框项: 处理方法:通过Python脚本处理打包。 运行环境 在Pro的Python环境中去运行编写的Python脚本。 Python 脚本参考 import arcpy import os# Set output file names outdir r"d:\data\out&…

天津三石峰科技——汽车生产厂的设备振动检测项目案例

汽车产线有很多传动设备需要长期在线运行,会出现老化、疲劳、磨损等 问题,为了避免意外停机造成损失,需要加装一些健康监测设备,监测设备运 行状态。天津三石峰科技采用 12 通道振动信号采集卡(下图 1)对…

【Linux】深入理解linux权限

🌟🌟作者主页:ephemerals__ 🌟🌟所属专栏:Linux 目录 前言 一、权限是什么 二、用户和身份角色 三、文件属性 1. 文件属性表示 2. 文件类型 3. 文件的权限属性 四、修改文件的权限属性和角色 1. …

三次握手,四次挥手,服务器模型(多进程并发,线程),基于套接字的UDP通信

三次握手: 第一次握手:客户端向服务器发送SYN待确认数据x, 客户端进入SYN_SEND状态​ 第二次握手:服务器向客户端回传一条ACK应答数据x1, 同时发送一条SYN待确认数据y,服务器进入SYN_RECV状态​ 第三次握手:客户端向服…

PostgreSQL的学习心得和知识总结(一百六十七)|深入理解PostgreSQL数据库之静态语法检查工具PgSanity的使用和实现

目录结构 注:提前言明 本文借鉴了以下博主、书籍或网站的内容,其列表如下: 1、参考书籍:《PostgreSQL数据库内核分析》 2、参考书籍:《数据库事务处理的艺术:事务管理与并发控制》 3、PostgreSQL数据库仓库链接,点击前往 4、日本著名PostgreSQL数据库专家 铃木启修 网站…

【数据结构】双向链表(真正的零基础)

链表是一种物理存储单元上非连续、非顺序的存储结构。数据元素的逻辑顺序是通过指针的链接来实现的!在上篇我们学习了单向链表,而单向链表虽然空间利用率高,插入和删除也只需改变指针就可以达到!但是我们在每次查找、删除、访问..…

Docker 之mysql从头开始——Docker下mysql安装、启动、配置、进入容器执行(查询)sql

一、Docker 之mysql安装配置 步骤一:拉取镜像 1. 查看是否包含已安装的mysql。 docker images | grep mysql 2. 如上图所示,我们有mysql镜像,所以不必对mysql镜像进行拉取,如若没有上图中的惊喜,使用如下命令进行拉取…

网易日常实习一面面经

1. 自我介绍 2. 两道代码题: 第一道题:写一道链表排序题要求空间复杂度O(1) :已ac 插入排序算法 时间复杂度 O(N^2),空间复杂度O(1) class ListNode{int val;ListNode next;public ListNode(int x) {this.val x;} } public cl…

DeepSeek LLM 论文解读:相信长期主义开源理念可扩展大语言模型(DeepSeek 吹响通用人工智能的号角)

论文链接:DeepSeek LLM: Scaling Open-Source Language Models with Longtermism(相信长期主义开源理念可扩展大语言模型) 目录 摘要一、数据处理(一)数据清洗与丰富(二)分词器与词汇设置 二、模…

02DevOps基础环境准备

准备两台Linux的操作系统,最简单的方式就是在本机上使用虚拟机搭建两个操作系统(实际生产环境是两台服务器,虚拟机的方式用于学习使用) 我搭建的两台服务器的ip分别是192.168.1.10、192.168.1.11 192.168.1.10服务器用于安装doc…

基于 SpringBoot 和 Vue 的智能腰带健康监测数据可视化平台开发(文末联系,整套资料提供)

基于 SpringBoot 和 Vue 的智能腰带健康监测数据可视化平台开发 一、系统介绍 随着人们生活水平的提高和健康意识的增强,智能健康监测设备越来越受到关注。智能腰带作为一种新型的健康监测设备,能够实时采集用户的腰部健康数据,如姿势、运动…

表单与交互:HTML表单标签全面解析

目录 前言 一.HTML表单的基本结构 基本结构 示例 二.常用表单控件 文本输入框 选择控件 文件上传 按钮 综合案例 三.标签的作用 四.注意事项 前言 HTML&#xff08;超文本标记语言&#xff09;是构建网页的基础&#xff0c;其中表单&#xff08;<form>&…

vue3中使用print-js组件实现打印操作

第一步&#xff1a;安装依赖 yarn add print-js 第二步&#xff1a;创建打印组件&#xff1a;PrintHtmlComp.vue <template><div id"printArea_123456789"><!-- 默认插槽&#xff0c;传入打印内容 --><slot></slot></div>…

【计算机网络】TCP/IP 网络模型有哪几层?

目录 应用层 传输层 网络层 网络接口层 总结 为什么要有 TCP/IP 网络模型&#xff1f; 对于同一台设备上的进程间通信&#xff0c;有很多种方式&#xff0c;比如有管道、消息队列、共享内存、信号等方式&#xff0c;而对于不同设备上的进程间通信&#xff0c;就需要网络通…

网络工程师 (29)CSMA/CD协议

前言 CSMA/CD协议&#xff0c;即载波监听多路访问/碰撞检测&#xff08;Carrier Sense Multiple Access with Collision Detection&#xff09;协议&#xff0c;是一种在计算机网络中&#xff0c;特别是在以太网环境下&#xff0c;用于管理多个设备共享同一物理传输介质的重要…

基于Python的人工智能驱动基因组变异算法:设计与应用(下)

3.3.2 数据清洗与预处理 在基因组变异分析中,原始数据往往包含各种噪声和不完整信息,数据清洗与预处理是确保分析结果准确性和可靠性的关键步骤。通过 Python 的相关库和工具,可以有效地去除噪声、填补缺失值、标准化数据等,为后续的分析提供高质量的数据基础。 在基因组…

AI大语言模型

一、AIGC和生成式AI的概念 1-1、AIGC Al Generated Content&#xff1a;AI生成内容 1-2、生成式AI&#xff1a;generative ai AIGC是生成式 AI 技术在内容创作领域的具体应用成果。 目前有许多知名的生成式 AI&#xff1a; 文本生成领域 OpenAI GPT 系列百度文心一言阿里通…

在postman中设置环境变量和全局变量以及五大常用响应体断言

一、什么是环境变量和全局变量 环境变量&#xff08;Environment Variables&#xff09;和全局变量&#xff08;Global Variables&#xff09;是 Postman 中用于存储和管理数据的两种变量类型&#xff0c;它们可以提高 API 测试的灵活性和可维护性。 1、 环境变量&#xff08…

Redis数据库(二):Redis 常用的五种数据结构

Redis 能够做到高性能的原因主要有两个&#xff0c;一是它本身是内存型数据库&#xff0c;二是采用了多种适用于不同场景的底层数据结构。 Redis 常用的数据结构支持字符串、列表、哈希表、集合和有序集合。实现这些数据结构的底层数据结构有 6 种&#xff0c;分别是简单动态字…

C++STL(六)——list模拟

目录 本次所需实现的三个类一、结点类的模拟实现构造函数 二、迭代器类的模拟实现为什么有迭代器类迭代器类的模板参数说明构造函数运算符的重载- -运算符的重载和!运算符的重载*运算符的重载->运算符的重载引入模板第二个和第三个参数 三、list的模拟实现3.1 默认成员函数构…