【计算机网络】TCP/IP 网络模型有哪几层?

目录

应用层

传输层

网络层

网络接口层

总结


为什么要有 TCP/IP 网络模型?

对于同一台设备上的进程间通信,有很多种方式,比如有管道、消息队列、共享内存、信号等方式,而对于不同设备上的进程间通信,就需要网络通信,而设备是多样性的,所以要兼容多种多样的设备,就协商出了一套通用的网络协议

这个网络协议是分层的,每一层都有各自的作用和职责,接下来就根据「 TCP/IP 网络模型」分别对每一层进行介绍。

应用层

最上层的,也是我们能直接接触到的就是应用层Application Layer),我们电脑或手机使用的应用软件都是在应用层实现。那么,当两个不同设备的应用需要通信的时候,应用就把应用数据传给下一层,也就是传输层。

所以,应用层只需要专注于为用户提供应用功能,比如 HTTP、FTP、Telnet、DNS、SMTP等。

应用层是不用去关心数据是如何传输的,就类似于,我们寄快递的时候,只需要把包裹交给快递员,由他负责运输快递,我们不需要关心快递是如何被运输的。

而且应用层是工作在操作系统中的用户态,传输层及以下则工作在内核态。

传输层

应用层的数据包会传给传输层,传输层Transport Layer)是为应用层提供网络支持的。

在传输层会有两个传输协议,分别是 TCP 和 UDP。

TCP 的全称叫传输控制协议(Transmission Control Protocol),大部分应用使用的正是 TCP 传输层协议,比如 HTTP 应用层协议。TCP 相比 UDP 多了很多特性,比如流量控制、超时重传、拥塞控制等,这些都是为了保证数据包能可靠地传输给对方。

UDP 相对来说就很简单,简单到只负责发送数据包,不保证数据包是否能抵达对方,但它实时性相对更好,传输效率也高。当然,UDP 也可以实现可靠传输,把 TCP 的特性在应用层上实现就可以,不过要实现一个商用的可靠 UDP 传输协议,也不是一件简单的事情。

应用需要传输的数据可能会非常大,如果直接传输就不好控制,因此当传输层的数据包大小超过 MSS(TCP 最大报文段长度) ,就要将数据包分块,这样即使中途有一个分块丢失或损坏了,只需要重新发送这一个分块,而不用重新发送整个数据包。在 TCP 协议中,我们把每个分块称为一个 TCP 段TCP Segment)。

当设备作为接收方时,传输层则要负责把数据包传给应用,但是一台设备上可能会有很多应用在接收或者传输数据,因此需要用一个编号将应用区分开来,这个编号就是端口。 

比如 80 端口通常是 Web 服务器用的,22 端口通常是远程登录服务器用的。而对于浏览器(客户端)中的每个标签栏都是一个独立的进程,操作系统会为这些进程分配临时的端口号。

由于传输层的报文中会携带端口号,因此接收方可以识别出该报文是发送给哪个应用。

网络层

传输层可能大家刚接触的时候,会认为它负责将数据从一个设备传输到另一个设备,事实上它并不负责。

实际场景中的网络环节是错综复杂的,中间有各种各样的线路和分叉路口,如果一个设备的数据要传输给另一个设备,就需要在各种各样的路径和节点进行选择,而传输层的设计理念是简单、高效、专注,如果传输层还负责这一块功能就有点违背设计原则了。

也就是说,我们不希望传输层协议处理太多的事情,只需要服务好应用即可,让其作为应用间数据传输的媒介,帮助实现应用到应用的通信,而实际的传输功能就交给下一层,也就是网络层Internet Layer)。

 网络层最常使用的是 IP 协议(Internet Protocol),IP 协议会将传输层的报文作为数据部分,再加上 IP 包头组装成 IP 报文,如果 IP 报文大小超过 MTU(以太网中一般为 1500 字节)就会再次进行分片,得到一个即将发送到网络的 IP 报文。

网络层负责将数据从一个设备传输到另一个设备,世界上那么多设备,又该如何找到对方呢?因此,网络层需要有区分设备的编号。 

我们一般用 IP 地址给设备进行编号,对于 IPv4 协议, IP 地址共 32 位,分成了四段(比如,192.168.100.1),每段是 8 位。只有一个单纯的 IP 地址虽然做到了区分设备,但是寻址起来就特别麻烦,全世界那么多台设备,难道一个一个去匹配?这显然不科学。

因此,需要将 IP 地址分成两种意义:

  • 一个是网络号,负责标识该 IP 地址是属于哪个「子网」的;
  • 一个是主机号,负责标识同一「子网」下的不同主机;

怎么分的呢?这需要配合子网掩码才能算出 IP 地址 的网络号和主机号。

举个例子,比如 10.100.122.0/24,后面的/24表示就是 255.255.255.0 子网掩码,255.255.255.0 二进制是「11111111-11111111-11111111-00000000」,大家数数一共多少个1?不用数了,是 24 个1,为了简化子网掩码的表示,用/24代替255.255.255.0。

知道了子网掩码,该怎么计算出网络地址和主机地址呢?

将 10.100.122.2 和 255.255.255.0 进行按位与运算,就可以得到网络号,如下图:

将 255.255.255.0 取反后与IP地址进行进行按位与运算, 就可以得到主机号。

大家可以去搜索下子网掩码计算器,自己改变下「掩码位」的数值,就能体会到子网掩码的作用了。

那么在寻址的过程中,先匹配到相同的网络号(表示要找到同一个子网),才会去找对应的主机。 

除了寻址能力, IP 协议还有另一个重要的能力就是路由。实际场景中, 两台设备并不是用一条网线连接起来的,而是通过很多网关、路由器、交换机等众多网络设备连接起来的,那么就会形成很多条网络的路径,因此当数据包到达一个网络节点,就需要通过路由算法决定下一步走哪条路径。

路由器寻址工作中,就是要找到目标地址的子网,找到后进而把数据包转发给对应的网络内。

 

所以,IP 协议的寻址作用是告诉我们去往下一个目的地该朝哪个方向走,路由则是根据「下一个目的地」选择路径。寻址更像在导航,路由更像在操作方向盘。 

网络接口层

生成了 IP 头部之后,接下来要交给网络接口层Link Layer)在 IP 头部的前面加上 MAC 头部,并封装成数据帧(Data frame)发送到网络上。

IP 头部中的接收方 IP 地址表示网络包的目的地,通过这个地址我们就可以判断要将包发到哪里,但在以太网的世界中,这个思路是行不通的。

什么是以太网呢?电脑上的以太网接口,Wi-Fi接口,以太网交换机、路由器上的千兆,万兆以太网口,还有网线,它们都是以太网的组成部分。以太网就是一种在「局域网」内,把附近的设备连接起来,使它们之间可以进行通讯的技术。 

以太网在判断网络包目的地时和 IP 的方式不同,因此必须采用相匹配的方式才能在以太网中将包发往目的地,而 MAC 头部就是干这个用的,所以,在以太网进行通讯要用到 MAC 地址。

MAC 头部是以太网使用的头部,它包含了接收方和发送方的 MAC 地址等信息,我们可以通过 ARP 协议获取对方的 MAC 地址。

所以说,网络接口层主要为网络层提供「链路级别」传输的服务,负责在以太网、WiFi 这样的底层网络上发送原始数据包,工作在网卡这个层次,使用 MAC 地址来标识网络上的设备。

总结

综上所述,TCP/IP 网络通常是由上到下分成 4 层,分别是应用层,传输层,网络层和网络接口层

每一层的封装格式:

网络接口层的传输单位是帧(frame),IP 层的传输单位是包(packet),TCP 层的传输单位是段(segment),HTTP 的传输单位则是消息或报文(message)。但这些名词并没有什么本质的区分,可以统称为数据包。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/967526.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网络工程师 (29)CSMA/CD协议

前言 CSMA/CD协议,即载波监听多路访问/碰撞检测(Carrier Sense Multiple Access with Collision Detection)协议,是一种在计算机网络中,特别是在以太网环境下,用于管理多个设备共享同一物理传输介质的重要…

基于Python的人工智能驱动基因组变异算法:设计与应用(下)

3.3.2 数据清洗与预处理 在基因组变异分析中,原始数据往往包含各种噪声和不完整信息,数据清洗与预处理是确保分析结果准确性和可靠性的关键步骤。通过 Python 的相关库和工具,可以有效地去除噪声、填补缺失值、标准化数据等,为后续的分析提供高质量的数据基础。 在基因组…

AI大语言模型

一、AIGC和生成式AI的概念 1-1、AIGC Al Generated Content:AI生成内容 1-2、生成式AI:generative ai AIGC是生成式 AI 技术在内容创作领域的具体应用成果。 目前有许多知名的生成式 AI: 文本生成领域 OpenAI GPT 系列百度文心一言阿里通…

在postman中设置环境变量和全局变量以及五大常用响应体断言

一、什么是环境变量和全局变量 环境变量(Environment Variables)和全局变量(Global Variables)是 Postman 中用于存储和管理数据的两种变量类型,它们可以提高 API 测试的灵活性和可维护性。 1、 环境变量&#xff08…

Redis数据库(二):Redis 常用的五种数据结构

Redis 能够做到高性能的原因主要有两个,一是它本身是内存型数据库,二是采用了多种适用于不同场景的底层数据结构。 Redis 常用的数据结构支持字符串、列表、哈希表、集合和有序集合。实现这些数据结构的底层数据结构有 6 种,分别是简单动态字…

C++STL(六)——list模拟

目录 本次所需实现的三个类一、结点类的模拟实现构造函数 二、迭代器类的模拟实现为什么有迭代器类迭代器类的模板参数说明构造函数运算符的重载- -运算符的重载和!运算符的重载*运算符的重载->运算符的重载引入模板第二个和第三个参数 三、list的模拟实现3.1 默认成员函数构…

国产编辑器EverEdit - 替换功能详解

1 替换 1.1 应用场景 替换文本是在文档编辑过程中不可回避的操作,是将指定的关键词替换为新的文本,比如:写代码时修改变量名等。 1.2 使用方法 1.2.1 基本替换 使用主菜单查找 -> 替换,或使用快捷键Ctrl H,会打…

LIMO:上海交大的工作 “少即是多” LLM 推理

25年2月来自上海交大、SII 和 GAIR 的论文“LIMO: Less is More for Reasoning”。 一个挑战是在大语言模型(LLM)中的复杂推理。虽然传统观点认为复杂的推理任务需要大量的训练数据(通常超过 100,000 个示例),但本文展…

防御保护作业二

拓扑图 需求 需求一: 需求二: 需求三: 需求四: 需求五: 需求六: 需求七: 需求分析 1.按照要求进行设备IP地址的配置 2.在FW上开启DHCP功能,并配置不同的全局地址池,为…

蓝桥与力扣刷题(226 翻转二叉树)

题目:给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。 示例 1: 输入:root [4,2,7,1,3,6,9] 输出:[4,7,2,9,6,3,1]示例 2: 输入:root [2,1,3] 输出:[2,…

大型语言模型(LLM)中的自适应推理预算管理:基于约束策略优化的解决方案

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

[EAI-033] SFT 记忆,RL 泛化,LLM和VLM的消融研究

Paper Card 论文标题:SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training 论文作者:Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V. Le, Sergey Levine, Yi Ma 论…

大数据-259 离线数仓 - Griffin架构 修改配置 pom.xml sparkProperties 编译启动

点一下关注吧!!!非常感谢!!持续更新!!! Java篇开始了! 目前开始更新 MyBatis,一起深入浅出! 目前已经更新到了: Hadoop&#xff0…

【时时三省】(C语言基础)基础习题1

山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 1.什么是程序?什么是程序设计 程序是为实现特定目标或解决特定问题,用计算机能理解和执行的语言编写的一系列指令的集合。 程序设计是问题分析,设计算法…

防火墙用户认证实验

1、创建vlan10和vlan20 2、将接口划分到对应的vlan中 [FW]interface GigabitEthernet 1/0/1.1 [FW-GigabitEthernet1/0/1.1]ip address 172.16.1.254 24 [FW-GigabitEthernet1/0/1.1]vlan-type dot1q 10 [FW]interface GigabitEthernet 1/0/1.2 [FW-GigabitEthernet1/0/1.1]ip …

VUE项目中实现权限控制,菜单权限,按钮权限,接口权限,路由权限,操作权限,数据权限实现

VUE项目中实现权限控制,菜单权限,按钮权限,接口权限,路由权限,操作权限,数据权限实现 权限系统分类(RBAC)引言菜单权限按钮权限接口权限路由权限 菜单权限方案方案一:菜单…

ESXi Host Client创建ubuntu虚拟机教程及NVIDIA显卡驱动安装

参考文章 VMware虚拟机显卡直通记录 AIGC 实战(环境篇) - EXSI 8.0 Debian安装RTX3060显卡驱动 重点介绍 client版本是7.0.3 注意:下图中不要选择BIOS 按照两个链接中的方法进行操作,以及本章节的上面几个图片的配置之后&a…

DeepSeek帮助做【真】软件需求-而不是批量刷废话

尝试给DeepSeek一份系统用例规约,让它帮判断哪些地方还没有覆盖涉众利益。结果见以下 需求工作的重点可以放在建模精细的真实现状流程和精细的真实涉众利益上,AI帮助推演系统需求。

apache-poi导出excel数据

excel导出 自动设置宽度&#xff0c;设置标题框&#xff0c;设置数据边框。 excel导出 添加依赖 <dependency><groupId>org.apache.poi</groupId><artifactId>poi-ooxml</artifactId><version>5.2.2</version></dependency>…

10 FastAPI 的自动文档

FastAPI 是一个功能强大且易于使用的 Web 框架&#xff0c;它的最大亮点之一就是内置的 自动文档生成 功能。通过集成 Swagger UI 和 ReDoc&#xff0c;FastAPI 可以自动为我们的 API 生成交互式文档。这不仅使得开发者能够更快速地了解和测试 API&#xff0c;还能够为前端开发…