【计算机视觉】YOLO 入门:训练 COCO128 数据集

一、COCO128 数据集

我们以最近大热的YOLOv8为例,回顾一下之前的安装过程:

%pip install ultralytics
import ultralytics
ultralytics.checks()

在这里插入图片描述
这里选择训练的数据集为:COCO128

COCO128是一个小型教程数据集,由COCOtrain2017中的前128个图像组成。

在YOLO中自带的coco128.yaml文件:

1)可选的用于自动下载的下载命令/URL,

2)指向培训图像目录的路径(或指向带有培训图像列表的*.txt文件的路径),

3)与验证图像相同,

4)类数,

5)类名列表:

# download command/URL (optional)
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip

# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../coco128/images/train2017/
val: ../coco128/images/train2017/

# number of classes
nc: 80

# class names
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 
        'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 
        'teddy bear', 'hair drier', 'toothbrush']

二、训练过程

!yolo train model = yolov8n.pt data = coco128.yaml epochs = 10 imgsz = 640

训练过程为:

                   from  n    params  module                                       arguments                     
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]                 
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]                
  2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]             
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                
  4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, Tr
ue]             
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               
  6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              
  8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]           
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]                 
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]                 
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]                  
 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]                 
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]                 
 22        [15, 18, 21]  1    897664  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]          
Model summary: 225 layers, 3157200 parameters, 3157184 gradients
Transferred 355/355 items from pretrained weights
TensorBoard: Start with 'tensorboard --logdir runs/detect/train', view at http://localhost:6006/
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
AMP: checks passed ✅
train: Scanning /kaggle/working/datasets/coco128/labels/train2017.cache... 126 i
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))
val: Scanning /kaggle/working/datasets/coco128/labels/train2017.cache... 126 ima
Plotting labels to runs/detect/train/labels.jpg... 
optimizer: AdamW(lr=0.000119, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 2 dataloader workers
Logging results to runs/detect/train
Starting training for 10 epochs...
Closing dataloader mosaic
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))
      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       1/10      2.61G      1.153      1.398      1.192         81        640: 1
                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929      0.688      0.506       0.61      0.446

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       2/10      2.56G      1.142      1.345      1.202        121        640: 1
                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929      0.678      0.525       0.63      0.456

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       3/10      2.57G      1.147       1.25      1.175        108        640: 1
                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929      0.656      0.548       0.64      0.466

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       4/10      2.57G      1.149      1.287      1.177        116        640: 1
                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929      0.684      0.568      0.654      0.482

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       5/10      2.57G      1.169      1.233      1.207         68        640: 1
                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929      0.664      0.586      0.668      0.491

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       6/10      2.57G      1.139      1.231      1.177         95        640: 1
                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929       0.66      0.613      0.677        0.5

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       7/10      2.57G      1.134      1.211      1.181        115        640: 1
                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929      0.649      0.631      0.683      0.504

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       8/10      2.57G      1.114      1.194      1.178         71        640: 1
                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929      0.664      0.634       0.69      0.513

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
       9/10      2.57G      1.117      1.127      1.148        142        640: 1
                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929      0.624      0.671      0.697       0.52

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
      10/10      2.57G      1.085      1.133      1.172        104        640: 1
                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929      0.631      0.676      0.704      0.522
10 epochs completed in 0.018 hours.
Optimizer stripped from runs/detect/train/weights/last.pt, 6.5MB
Optimizer stripped from runs/detect/train/weights/best.pt, 6.5MB

Validating runs/detect/train/weights/best.pt...
Ultralytics YOLOv8.0.128 🚀 Python-3.10.10 torch-2.0.0 CUDA:0 (Tesla P100-PCIE-16GB, 16281MiB)
Model summary (fused): 168 layers, 3151904 parameters, 0 gradients
                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929      0.629      0.677      0.704      0.523
                person        128        254      0.763      0.721      0.778      0.569
               bicycle        128          6      0.765      0.333      0.391      0.321
                   car        128         46      0.487      0.217      0.322      0.192
            motorcycle        128          5      0.613        0.8      0.906      0.732
              airplane        128          6      0.842          1      0.972      0.809
                   bus        128          7      0.832      0.714      0.712       0.61
                 train        128          3       0.52          1      0.995      0.858
                 truck        128         12      0.597        0.5      0.547      0.373
                  boat        128          6      0.526      0.167      0.448      0.328
         traffic light        128         14      0.471      0.214      0.184      0.145
             stop sign        128          2      0.671          1      0.995      0.647
                 bench        128          9      0.675      0.695       0.72      0.489
                  bird        128         16      0.936      0.921      0.961       0.67
                   cat        128          4      0.818          1      0.995      0.772
                   dog        128          9       0.68      0.889      0.908      0.722
                 horse        128          2      0.441          1      0.828      0.497
              elephant        128         17      0.742      0.848      0.933       0.71
                  bear        128          1      0.461          1      0.995      0.995
                 zebra        128          4       0.85          1      0.995      0.972
               giraffe        128          9      0.824          1      0.995      0.772
              backpack        128          6      0.596      0.333      0.394      0.257
              umbrella        128         18      0.564      0.722      0.681      0.429
               handbag        128         19      0.635      0.185      0.326      0.178
                   tie        128          7      0.671      0.714      0.758      0.522
              suitcase        128          4      0.687          1      0.945      0.603
               frisbee        128          5       0.52        0.8      0.799      0.689
                  skis        128          1      0.694          1      0.995      0.497
             snowboard        128          7      0.499      0.714      0.732      0.589
           sports ball        128          6      0.747      0.494      0.573      0.342
                  kite        128         10      0.539        0.5      0.504      0.181
          baseball bat        128          4      0.595        0.5      0.509      0.253
        baseball glove        128          7      0.808      0.429      0.431      0.318
            skateboard        128          5      0.493        0.6      0.609      0.465
         tennis racket        128          7      0.451      0.286      0.446      0.274
                bottle        128         18        0.4      0.389      0.365      0.257
            wine glass        128         16      0.597      0.557      0.675      0.366
                   cup        128         36      0.586      0.389      0.465      0.338
                  fork        128          6      0.582      0.167      0.306      0.234
                 knife        128         16      0.621      0.625      0.669      0.405
                 spoon        128         22      0.525      0.364       0.41      0.227
                  bowl        128         28      0.657      0.714      0.719      0.584
                banana        128          1      0.319          1      0.497     0.0622
              sandwich        128          2      0.812          1      0.995      0.995
                orange        128          4      0.784          1      0.895      0.594
              broccoli        128         11      0.431      0.273      0.339       0.26
                carrot        128         24      0.553      0.833      0.801      0.504
               hot dog        128          2      0.474          1      0.995      0.946
                 pizza        128          5      0.736          1      0.995      0.882
                 donut        128         14      0.574          1      0.929       0.85
                  cake        128          4      0.769          1      0.995       0.89
                 chair        128         35      0.503      0.571      0.542      0.307
                 couch        128          6      0.526      0.667      0.805      0.612
          potted plant        128         14      0.479      0.786      0.784      0.545
                   bed        128          3      0.714          1      0.995       0.83
          dining table        128         13      0.451      0.615      0.552      0.437
                toilet        128          2          1      0.942      0.995      0.946
                    tv        128          2      0.622          1      0.995      0.846
                laptop        128          3          1      0.452      0.863      0.738
                 mouse        128          2          1          0     0.0459    0.00459
                remote        128          8      0.736        0.5       0.62      0.527
            cell phone        128          8     0.0541      0.027     0.0731      0.043
             microwave        128          3      0.773      0.667      0.913      0.807
                  oven        128          5      0.442      0.483      0.433      0.336
                  sink        128          6      0.378      0.167      0.336      0.231
          refrigerator        128          5      0.662      0.786      0.778      0.616
                  book        128         29       0.47      0.336      0.402       0.23
                 clock        128          9       0.76      0.778      0.884      0.762
                  vase        128          2      0.428          1      0.828      0.745
              scissors        128          1      0.911          1      0.995      0.256
            teddy bear        128         21      0.551      0.667      0.805      0.515
            toothbrush        128          5      0.768          1      0.995       0.65
Speed: 3.4ms preprocess, 1.9ms inference, 0.0ms loss, 2.4ms postprocess per image
Results saved to runs/detect/train

三、验证过程

!yolo val model = yolov8n.pt data = coco128.yaml

输出的结果为:

                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929       0.64      0.537      0.605      0.446
                person        128        254      0.797      0.677      0.764      0.538
               bicycle        128          6      0.514      0.333      0.315      0.264
                   car        128         46      0.813      0.217      0.273      0.168
            motorcycle        128          5      0.687      0.887      0.898      0.685
              airplane        128          6       0.82      0.833      0.927      0.675
                   bus        128          7      0.491      0.714      0.728      0.671
                 train        128          3      0.534      0.667      0.706      0.604
                 truck        128         12          1      0.332      0.473      0.297
                  boat        128          6      0.226      0.167      0.316      0.134
         traffic light        128         14      0.734        0.2      0.202      0.139
             stop sign        128          2          1      0.992      0.995      0.701
                 bench        128          9      0.839      0.582       0.62      0.365
                  bird        128         16      0.921      0.728      0.864       0.51
                   cat        128          4      0.875          1      0.995      0.791
                   dog        128          9      0.603      0.889      0.785      0.585
                 horse        128          2      0.597          1      0.995      0.518
              elephant        128         17      0.849      0.765        0.9      0.679
                  bear        128          1      0.593          1      0.995      0.995
                 zebra        128          4      0.848          1      0.995      0.965
               giraffe        128          9       0.72          1      0.951      0.722
              backpack        128          6      0.589      0.333      0.376      0.232
              umbrella        128         18      0.804        0.5      0.643      0.414
               handbag        128         19      0.424     0.0526      0.165     0.0889
                   tie        128          7      0.804      0.714      0.674      0.476
              suitcase        128          4      0.635      0.883      0.745      0.534
               frisbee        128          5      0.675        0.8      0.759      0.688
                  skis        128          1      0.567          1      0.995      0.497
             snowboard        128          7      0.742      0.714      0.747        0.5
           sports ball        128          6      0.716      0.433      0.485      0.278
                  kite        128         10      0.817       0.45      0.569      0.184
          baseball bat        128          4      0.551       0.25      0.353      0.175
        baseball glove        128          7      0.624      0.429      0.429      0.293
            skateboard        128          5      0.846        0.6        0.6       0.41
         tennis racket        128          7      0.726      0.387      0.487       0.33
                bottle        128         18      0.448      0.389      0.376      0.208
            wine glass        128         16      0.743      0.362      0.584      0.333
                   cup        128         36       0.58      0.278      0.404       0.29
                  fork        128          6      0.527      0.167      0.246      0.184
                 knife        128         16      0.564        0.5       0.59       0.36
                 spoon        128         22      0.597      0.182      0.328       0.19
                  bowl        128         28      0.648      0.643      0.618      0.491
                banana        128          1          0          0      0.124     0.0379
              sandwich        128          2      0.249        0.5      0.308      0.308
                orange        128          4          1       0.31      0.995      0.623
              broccoli        128         11      0.374      0.182      0.249      0.203
                carrot        128         24      0.648      0.458      0.572      0.362
               hot dog        128          2      0.351      0.553      0.745      0.721
                 pizza        128          5      0.644          1      0.995      0.843
                 donut        128         14      0.657          1       0.94      0.864
                  cake        128          4      0.618          1      0.945      0.845
                 chair        128         35      0.506      0.514      0.442      0.239
                 couch        128          6      0.463        0.5      0.706      0.555
          potted plant        128         14       0.65      0.643      0.711      0.472
                   bed        128          3      0.698      0.667      0.789      0.625
          dining table        128         13      0.432      0.615      0.485      0.366
                toilet        128          2      0.615        0.5      0.695      0.676
                    tv        128          2      0.373       0.62      0.745      0.696
                laptop        128          3          1          0      0.451      0.361
                 mouse        128          2          1          0     0.0625    0.00625
                remote        128          8      0.843        0.5      0.605      0.529
            cell phone        128          8          0          0     0.0549     0.0393
             microwave        128          3      0.435      0.667      0.806      0.718
                  oven        128          5      0.412        0.4      0.339       0.27
                  sink        128          6       0.35      0.167      0.182      0.129
          refrigerator        128          5      0.589        0.4      0.604      0.452
                  book        128         29      0.629      0.103      0.346      0.178
                 clock        128          9      0.788       0.83      0.875       0.74
                  vase        128          2      0.376          1      0.828      0.795
              scissors        128          1          1          0      0.249     0.0746
            teddy bear        128         21      0.877      0.333      0.591      0.394
            toothbrush        128          5      0.743        0.6      0.638      0.374
Speed: 1.0ms preprocess, 8.5ms inference, 0.0ms loss, 1.6ms postprocess per image
Results saved to runs/detect/val

可视化的结果为:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/96711.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

iOS逆向:越狱及相关概念的介绍

在上一篇内容中我们介绍了App脱壳的技术,今天我们来介绍一个和iOS逆向密切相关的知识:越狱。 iOS操作系统的封闭性一直是开发者们关注的焦点之一。为了突破Apple的限制,越狱技术应运而生。本文将深入探讨iOS越狱,包括可越狱的版本…

SaaS多租户系统架构设计

前言:多租户是SaaS(Software-as-a-Service)下的一个概念,意思为软件即服务,即通过网络提供软件服务。SaaS平台供应商将应用软件统一部署在自己的服务器上,客户可以根据工作的实际需求,通过互联网…

thinkphp6 入门(1)--安装、路由规则、多应用模式

一、安装thinkphp6 具体参考官方文档 安装 ThinkPHP6.0完全开发手册 看云 下面仅列举重要步骤 ThinkPHP6.0的环境要求如下: PHP > 7.2.5 1. 安装Composer 2. 安装稳定版thinkphp 如果你是第一次安装的话,在命令行下面,切换到你的WE…

C++自创题目——第一期

一、题目描述: 在一段时间内,到达港口的船有n艘,其中每艘船的信息包括:到达时间t(表示第t秒),船上乘客数k,以及k名乘客的国籍。输出前3600s内每艘船上国籍种数,并输出国籍种数最少的船只的到达时间。 二、…

ArcGIS学习总结(19)——要素转点与空间连接(属性表字段映射)

1.在新创建的面矢量数据的属性表中没有对应的字段信息,为了能够和有属性信息的数据进行匹配,使其具有对应字段的信息。 2.需要匹配的矢量文件属性表信息。 3.对新创建的矢量文件执行要素转点:数据管理工具→要素→要素转点。 4.选择分析工…

【leetcode 力扣刷题】字符串翻转合集(全部反转///部分反转)

字符串翻转合集 344. 反转字符串541. 反转字符串Ⅱ151. 反转字符串中的单词剑指 Offer 58 - II. 左旋转字符串反转单词思路循环挪动子串和子串的拼接 344. 反转字符串 题目链接:344. 反转字符串 题目内容: 题目中重点强调了必须原地修改输入数组&#…

应用TortoiseSVN的SubWCRev管理VisualStudio C#项目编译版本号

首先要安装 TortoiseSVN, 并确保TortoiseSVN的bin目录被加入到系统环境变量Path中。 1、拷贝Porperties目录下的文件AssemblyInfo.cs生成副本AssemblyInfo.template, 作为版本管理的模板文件。 2、修改模板文件中的想要管理的版本号信息 // [assembly: AssemblyVersion(&quo…

SSM框架的学习与应用(Spring + Spring MVC + MyBatis)-Java EE企业级应用开发学习记录(第五天)MyBatis的注解开发

SSM框架的学习与应用(Spring Spring MVC MyBatis)-Java EE企业级应用开发学习记录(第五天)MyBatis的注解开发 ​ 昨天我们深入学习了MyBatis多表之间的关联映射,了解掌握了一对一关联映射,一对多关联映射,嵌套查询方…

【C语言】每日一题(除自身以外数组的乘积)

添加链接描述,链接奉上 方法: 暴力循环:前缀积后缀积(分组): 暴力循环: 暴力循换真的是差生法宝,简单好懂,就是不实用,大多数的题目都会超过时间限制(无奈) 思路&…

postgresql-字符函数

postgresql-字符函数 字符串连接字符与编码字符串长度大小写转换子串查找与替换截断与填充字符串格式化MD5 值字符串拆分字符串反转 字符串连接 concat(str, …)函数用于连接字符串,并且忽略其中的 NULL 参数;concat_ws(sep, str, …) 函数使用指定分隔…

【JS案例】JS实现图片放大镜功能

JS案例图片放大镜 🌟效果展示 🌟HTML结构 🌟CSS样式 🌟实现思路 🌟具体实现 1.初始化数据图片 2.获取所需DOM元素 3.初始化页面 初始化缩略图 绑定事件 🌟完整代码 🌟写在最后 &…

Centos7安装ZK-UI管理界面安装|Maven|Git|

一: JDK1.8安装 参考: Centos7卸载|安装JDK1.8|Xshell7批量控制多个终端 二:Maven安装 2.1:下载maven安装包 maven 下载地址:https://mirror.bit.edu.cn/apache/maven/maven-3/ [rootwww ~]# mkdir -p /usr/local/maven [rootwww ~]# …

STM32+RTThread配置以太网无法ping通,无法获取动态ip的问题

记录一个非常蠢的问题,今天在移植rtthread的以太网驱动的时候出现无法获取动态ip的问题,问题如下: 设置为动态ip时不管是连接路由器还是电脑主机都无法ping通,也无法获取dns地址。 设置为静态ip时无法ping通主机。 使用wireshark…

Docker笔记

学习了神光大佬的《Nest 通关秘籍》后,对docker做了个笔记,并实操部署了一下个人项目,在此记录一下 是什么 Docker是一种开源的容器化平台,它可以将应用程序及其依赖项打包到一个可移植的容器中,使得应用程序能够在任…

java八股文面试[JVM]——JVM调优

知识来源: 【2023年面试】JVM性能调优实战_哔哩哔哩_bilibili

测试平台metersphere

metersphere可以做接口测试、UI测试、性能测试。 metersphere接口测试底层是jmeter,可以做API管理,快捷调试,接口用例管理,接口自动化场景执行一键选取用例范围,生成测试报告。 会用jmeter,metersphere会…

深入浅出AXI协议(3)——握手过程

一、前言 在之前的文章中我们快速地浏览了一下AXI4协议中的接口信号,对此我们建议先有一个简单的认知,接下来在使用到的时候我们还会对各种信号进行一个详细的讲解,在这篇文章中我们将讲述AXI协议的握手协议。 二、握手协议概述 在前面的文章…

VS的调试技巧

Visual Studiohttps://visualstudio.microsoft.com/zh-hans/vs/ 目录 1、什么是调试? 2、debug和release 3、调试 3.1、环境 3.2、 快捷键 3.2.1、F10和F11 3.2.2、ctrlF5 3.2.3、F5与F9 3.2.3.1、条件断点 3.3、监视和内存观察 3.3.1、监视 3.3.2、内存 …

多目标应用:基于多目标向日葵优化算法(MOSFO)的微电网多目标优化调度MATLAB

一、微网系统运行优化模型 参考文献: [1]李兴莘,张靖,何宇,等.基于改进粒子群算法的微电网多目标优化调度[J].电力科学与工程, 2021, 37(3):7 二、多目标向日葵优化算法 多目标向日葵优化算法(Multi-objective sunflower optimization,MOS…

JavaScript基础语法01——初识JavaScript

哈喽,大家好,我是雷工! 最近有项目用到KingFusion软件,由于KingFusion是B/S架构的客户端组态软件,因此在学习KingFusion产品时会涉及许多前端的知识。 像JavaScript语言就是需要用的,俗话说:活到…