自定义数据集 使用scikit-learn中svm的包实现svm分类
代码
import numpy as np
import matplotlib.pyplot as plt
class1_points = np.array([[1.9, 1.2],
[1.5, 2.1],
[1.9, 0.5],
[1.5, 0.9],
[0.9, 1.2],
[1.1, 1.7],
[1.4, 1.1]])
class2_points = np.array([[3.2, 3.2],
[3.7, 2.9],
[3.2, 2.6],
[1.7, 3.3],
[3.4, 2.6],
[4.1, 2.3],
[3.0, 2.9]])
x1_data = np.concatenate((class1_points[:, 0], class2_points[:, 0]))
x2_data = np.concatenate((class1_points[:, 1], class2_points[:, 1]))
y = np.concatenate((np.ones(class1_points.shape[0]), -np.ones(class2_points.shape[0])))
w1 = 0.1
w2 = 0.1
b = 0
learning_rate = 0.05
l_data = x1_data.size
fig, (ax1, ax2) = plt.subplots(2, 1)
step_list = np.array([]) # 初始化为空数组
loss_values = np.array([]) # 初始化为空数组
num_iterations = 1000
for n in range(1, num_iterations + 1):
z = w1 * x1_data + w2 * x2_data + b
yz = y * z
loss = 1 - yz
loss[loss < 0] = 0
hinge_loss = np.mean(loss)
loss_values = np.append(loss_values, hinge_loss)
step_list = np.append(step_list, n)
gradient_w1 = 0
gradient_w2 = 0
gradient_b = 0
for i in range(len(y)):
if loss[i] > 0:
gradient_w1 += -y[i] * x1_data[i]
gradient_w2 += -y[i] * x2_data[i]
gradient_b += -y[i]
gradient_w1 /= len(y)
gradient_w2 /= len(y)
gradient_b /= len(y)
w1 -= learning_rate * gradient_w1
w2 -= learning_rate * gradient_w2
b -= learning_rate * gradient_b
# 显示频率设置
frequence_display = 50
if n % frequence_display == 0 or n == 1:
if np.abs(w2) < 1e-5:
continue
x1_min, x1_max = 0, 6
x2_min, x2_max = -(w1 * x1_min + b) / w2, -(w1 * x1_max + b) / w2
ax1.clear()
ax1.scatter(x1_data[:len(class1_points)], x2_data[:len(class1_points)], c='red', label='Class 1')
ax1.scatter(x1_data[len(class1_points):], x2_data[len(class1_points):], c='blue', label='Class 2')
ax1.plot((x1_min, x1_max), (x2_min, x2_max), 'r-')
ax1.set_title(f"SVM: w1={round(w1.item(), 3)}, w2={round(w2.item(), 3)}, b={round(b.item(), 3)}")
ax2.clear()
ax2.plot(step_list, loss_values, 'g-')
ax2.set_xlabel("Step")
ax2.set_ylabel("Loss")
# 显示图形
plt.pause(1)
plt.show()
效果展示