8_分类算法-k近邻算法(KNN)

文章目录

  • 1 KNN算法
    • 1.1 KNN算法原理
    • 1.2 KNN过程
    • 1.3 KNN三要素
    • 1.4 KNN分类预测规则
    • 1.5 KNN回归预测规则
    • 1.6 KNN算法实现方式(重点)
    • 1.7 k近邻算法优缺点
  • 2 KD-Tree
    • 2.1 KD Tree构建方式
    • 2.2 KD Tree查找最近邻
    • 2.3 KNN参数说明

1 KNN算法

  • 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
  • 来源:KNN算法最早是由Cover和Hart提出的一种分类算法

1.1 KNN算法原理

  • K近邻(K-nearst neighbors,KNN)是一种基本的机器学习算法,所谓k近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。比如:判断一个人的人品,只需要观察与他来往最密切的几个人的人品好坏就可以得出,即“近朱者赤,近墨者黑";KNN算法既可以应用于分类应用中,也可以应用在回归应用中。
  • KNN在做回归和分类的主要区别在于最后做预测的时候的决策方式不同。KNN在分类预测时,一般采用多数表决法;而在做回归预测时,一般采用平均值法

1.2 KNN过程

1、从训练集合中获取K个离待预测样本距离最近的样本数据;
2、根据获取得到的K个样本数据来预测当前待预测样本的目标属性值。

1.3 KNN三要素

在KNN算法中,非常重要的主要是三个因素:

  • K值的选择:对于K值的选择,一般根据样本分布选择一个较小的值,然后通过交叉验证来选择一个比较合适的最终值;当选择比较小的K值的时候,表示使用较小领域中的样本进行预测,训练误差会减小,但是会导致模型变得复杂,容易过拟合;当选择较大的K值的时候,表示使用较大领域中的样本进行预测,训练误差会增大,同时会使模型变得简单,容易导致欠拟合;
  • 距离的度量:一般使用欧氏距离(欧几里得距离);
  • 决策规则:在分类模型中,主要使用多数表决法或者加权多数表决法;在回归模型中,主要使用平均值法或者加权平均值法。

1.4 KNN分类预测规则

在KNN分类应用中,一般采用多数表决法或者加权多数表决法。

  • 多数表决法:每个邻近样本的权重是一样的,也就是说最终预测的结果为出现类别最多的那个类,比如下图中蓝色圆圈的最终类别为红色;
  • 加权多数表决法:每个邻近样本的权重是不一样的,一般情况下采用权重和距离成反比的方式来计算,也就是说最终预测结果是出现权重最大的那个类别;比如下图中,假设三个红色点到待预测样本点的距离均为2,两个黄色点到待预测样本点距离为1,那么蓝色圆圈的最终类别为黄色。

在这里插入图片描述

1.5 KNN回归预测规则

在KNN回归应用中,一般采用平均值法或者加权平均值法。

  • 平均值法:每个邻近样本的权重是一样的,也就是说最终预测的结果为所有邻近样本的目标属性值的均值;比如上图中,蓝色圆圈的最终预测值为:2.6;
  • 加权平均值法:每个邻近样本的权重是不一样的,一般情况下采用权重和距离成反比的方式来计算,也就是说在计算均值的时候进行加权操作;比如上图中,假设上面三个点到待预测样本点的距离均为2,下面两个点到待预测样本点距离为1,那么蓝色圆圈的最终预测值为:2.43,(权重分别为:1/7和2/7)

1.6 KNN算法实现方式(重点)

KNN算法的重点在于找出K个最邻近的点,主要方式有以下几种:

  • 蛮力实现(brute):计算预测样本到所有训练集样本的距离,然后选择最小的k个距离即可得到K个最邻近点。缺点在于当特征数比较多、样本数比较多的时候,算法的执行效率比较低;
  • KD树(kd_tree):KD树算法中,首先是对训练数据进行建模,构建KD树,然后再根据建好的模型来获取邻近样本数据。

除此之外,还有一些从KD-Tree修改后的求解最邻近点的算法,比如:Ball Tree BBF Tree,MVP Tree等。

1.7 k近邻算法优缺点

优点:简单,易于理解,易于实现,无需估计参数,无需训练

缺点:

  • 懒惰算法,对测试样本分类时的计算量大,内存开销大
  • 必须指定K值,K值选择不当则分类精度不能保证

使用场景:小数据场景,几千~几万样本,具体场景具体业务去测试

2 KD-Tree

  • KD Tree是KNN算法中用于计算最近邻的快速、便捷构建方式。
  • 当样本数据量少的时候,我们可以使用brute这种暴力的方式进行求解最近邻,即计算到所有样本的距离。但是当样本量比较大的时候,直接计算所有样本的距离,工作量有点大,所以在这种情况下,我们可以使用kd tree来快速的计算。

2.1 KD Tree构建方式

KD树采用从m个样本的n维特征中,分别计算n个特征取值的方差,用方差最大的第k维特征nk作为根节点。对于这个特征,选择取值的中位数nkv作为样本的划分点,对于小于该值的样本划分到左子树,对于大于等于该值的样本划分到右子树,对左右子树采用同样的方式找方差最大的特征作为根节点,递归即可产生KD树。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 KD Tree查找最近邻

当我们生成KD树以后,就可以去预测测试集里面的样本目标点了。

对于一个目标点,我们首先在KD树里面找到包含目标点的叶子节点。

以目标点为圆心,以目标点到叶子节点样本实例的距离为半径,得到一个超球体,最近邻的点一定在这个超球体内部。

然后返回叶子节点的父节点,检查另一个子节点包含的超矩形体是否和超球体相交,如果相交就到这个子节点寻找是否有更加近的近邻,有的话就更新最近邻。如果不相交那就简单了,我们直接返回父节点的父节点,在另一个子树继续搜索最近邻。当回溯到根节点时,算法结束,此时保存的最近邻节点就是最终的最近邻。
在这里插入图片描述
在这里插入图片描述

2.3 KNN参数说明

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/96509.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

司徒理财:8.30黄金原油今日最新行情分析及操作策略

黄金走势分析      从日线形态来看,昨晚经历了快速拉升,价格成功稳定在关键的1924压力位之上,最高甚至触及了1938的高点。这表明市场开启了新一轮走势的空间。在当天的日内交易中,我们应特别关注1925一线作为支撑,…

opencv 案例实战02-停车场车牌识别SVM模型训练及验证

1. 整个识别的流程图: 2. 车牌定位中分割流程图: 三、车牌识别中字符分割流程图: 1.准备数据集 下载车牌相关字符样本用于训练和测试,本文使用14个汉字样本和34个数字跟字母样本,每个字符样本数为40,样本尺…

基于Django的博客管理系统

1、克隆仓库https://gitee.com/lylinux/DjangoBlog.git 若失效:https://gitee.com/usutdzxy/DjangoBlog.git 2、环境安装 pip install -Ur requirements.txt3、修改djangoblog/setting.py 修改数据库配置,其他的步骤就按照官方文档。 DATABASES {def…

Git管理本地代码

一、Git配置 当安装完 Git 应该做的第一件事就是设置你的用户名称与邮件地址。 这样做很重要,因为每一个 Git 的提交都会使用这些信息,并且它会写入到你的每一次提交中,不可更改 – global全局配置 通过 --global 选项可以设置全局配置信息 …

算法笔记:球树

1 KD树的问题 算法笔记:KD树_UQI-LIUWJ的博客-CSDN博客 在kd树中,导致性能下降的最核心因素是因为kd-tree中被分割的子空间是一个个的超方体,而求最近邻时使用的是欧式距离(超球)。超方体与超球体相交的可能性是极高…

【原创】jmeter并发测试计划

bankQPS 创建线程组 设置并发参数 HTTP请求GET 添加HTTP请求 GET请求 查看结果树 HTTP请求 POST 添加HTTP请求 参数必须设置头信息格式: 添加HTTP头信息 查看结果树 可以选择,仅查看错误日志 汇总报告

【CSS】简记CSS效果:通过transition(动画过渡属性)实现侧边栏目滑入滑出

需求 在资金明细的页面中&#xff0c;点击按钮时筛选区域从左侧滑出&#xff0c;完成筛选点击确认后调用接口完成数据查询&#xff0c;筛选区域滑入左侧&#xff1b; 基于微信小程序页面实现 wxml代码 <view><!-- 操作按钮 --><button type"primary&qu…

Go测试之.golden 文件

Go测试中的.golden 文件是干什么用的&#xff1f;请举例说明 在Go语言中&#xff0c;.golden文件通常用于测试中的黄金文件&#xff08;golden files&#xff09;。黄金文件是在测试期间记录预期输出结果的文件。测试用例运行时&#xff0c;黄金文件用于比较实际输出与预期输出…

react18+antd5.x(1):Notification组件的二次封装

antdesign已经给我们提供了很好的组件使用体验&#xff0c;但是我们还需要根据自己的项目业务进行更好的封装&#xff0c;减少我们的代码量&#xff0c;提升开发体验 效果展示 开起来和官网的使用没什么区别&#xff0c;但是我们在使用的时候&#xff0c;进行了二次封装&#…

Java“牵手”1688淘口令转换API接口数据,1688API接口申请指南

1688平台商品淘口令接口是开放平台提供的一种API接口&#xff0c;通过调用API接口&#xff0c;开发者可以获取1688商品的标题、价格、库存、商品快递费用&#xff0c;宝贝ID&#xff0c;发货地&#xff0c;区域ID&#xff0c;快递费用&#xff0c;月销量、总销量、库存、详情描…

ChatGPT AIGC 一个指令总结Python所有知识点

在ChatGPT中,直接输入一个指令就可以生成Python的所有知识点大纲。 非常实用的ChatGPT功能。 AIGC ChatGPT ,BI商业智能, 可视化Tableau, PowerBI, FineReport, 数据库Mysql Oracle, Office, Python ,ETL Excel 2021 实操,函数,图表,大屏可视化 案例实战 http://t.…

【LeetCode75】第四十题 最大层内元素和

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 这道题和LeetCode75的上一题大同小异&#xff0c;都是要我们对二叉树进行层序遍历。 那具体如何层序遍历我再上一题也详细介绍过了&#…

vue2 组件库之vetur提示

当我们开发完自定义UI组件库后&#xff0c;在项目中使用时&#xff0c;想要达到以下提示效果&#xff0c;组件提示与属性提示&#xff0c;有什么解决方案呢&#xff1a; 事实上&#xff0c;这是vetur的功能&#xff0c;原文如下&#xff1a; Component Data | Vetur If a pac…

软件测试实训系统建设方案

一 、系统概述 软件测试实训系统是软件开发过程中的一项重要测试活动&#xff0c;旨在验证不同软件模块或组件之间的集成与交互是否正常。综合测试确保各个模块按照设计要求正确地协同工作&#xff0c;以实现整个软件系统的功能和性能。以下是软件测试实训系统的一般流程和步骤…

基于Jenkins自动打包并部署docker、PHP环境,ansible部署-------从小白到大神之路之学习运维第86天

第四阶段提升 时 间&#xff1a;2023年8月23日 参加人&#xff1a;全班人员 内 容&#xff1a; 基于Jenkins部署docker、PHP环境 目录 一、环境部署 &#xff08;一&#xff09;实验环境&#xff0c;服务器设置 &#xff08;二&#xff09;所有主机关闭防火墙和selinu…

揭秘:房产小程序如何助力售楼业务提升

随着移动互联网的发展&#xff0c;小程序已经成为各行各业进行营销推广的利器之一。对于房地产行业而言&#xff0c;小程序同样具有巨大的潜力。下面&#xff0c;我们将介绍如何使用乔拓云平台开发一款吸睛的房地产营销小程序。 第一步&#xff1a;注册登录乔拓云平台&#xff…

SpringBootWeb案例 Part3

目录 1. 新增员工 1.1 需求 1.2 接口文档 1.3 思路分析 PostMapping RequestBody //把前端传递的JSON数据填充到实体类中 1.4 功能开发 1.5 功能测试 1.6 前后端联调 2. 文件上传 2.1 文件上传简介 Spring中提供了一个API&#xff1a;MultipartFile&#xff0c;使…

自学设计模式(类图、设计原则、单例模式 - 饿汉/懒汉)

设计模式需要用到面向对象的三大特性——封装、继承、多态&#xff08;同名函数具有不同的状态&#xff09; UML类图 eg.—— 描述类之间的关系&#xff08;设计程序之间画类图&#xff09; : public; #: protected; -: private; 下划线: static 属性名:类型&#xff08;默认值…

【微服务部署】06-日志集成

文章目录 1. EFK日志三件套集成1.1 核心组件1.2 部署 2. Exceptionless日志系统2.1 Exceptionless核心特性2.2 Exceptionless部署文件2.3 K8s中使用Exceptionless 1. EFK日志三件套集成 1.1 核心组件 Elasticsearch&#xff08;存储&#xff09;Fluentd&#xff08;收集器&am…

H36M VS 3DPW datasets

1采集设备方面 H36M使用了高精度的多视角摄像机动态捕捉系统获得了非常准确和连贯的3D关节坐标标注。 3DPW使用了单目摄像机与IMU的复合传感系统进行采集,存在一定程度的标注噪声。 2场景环境方面 H36M主要针对室内定向动作,背景单一简洁。 3DPW重点是室外复杂环境中人的自…