opencv 案例实战02-停车场车牌识别SVM模型训练及验证

1. 整个识别的流程图:

在这里插入图片描述
2. 车牌定位中分割流程图:

在这里插入图片描述
三、车牌识别中字符分割流程图:

在这里插入图片描述

1.准备数据集

下载车牌相关字符样本用于训练和测试,本文使用14个汉字样本和34个数字跟字母样本,每个字符样本数为40,样本尺寸为28*28。

在这里插入图片描述

在这里插入图片描述
数据集下载地址

https://download.csdn.net/download/hai411741962/88248392

下载不了,评论区留言
2. 编码训练代码

import cv2
import numpy as np
from numpy.linalg import norm
import sys
import os
import json

SZ = 20          #训练图片长宽
MAX_WIDTH = 1000 #原始图片最大宽度
Min_Area = 2000  #车牌区域允许最大面积
PROVINCE_START = 1000
#不能保证包括所有省份
provinces = [
	"zh_cuan", "川",
	"zh_e", "鄂",
	"zh_gan", "赣",
	"zh_gan1", "甘",
	"zh_gui", "贵",
	"zh_gui1", "桂",
	"zh_hei", "黑",
	"zh_hu", "沪",
	"zh_ji", "冀",
	"zh_jin", "津",
	"zh_jing", "京",
	"zh_jl", "吉",
	"zh_liao", "辽",
	"zh_lu", "鲁",
	"zh_meng", "蒙",
	"zh_min", "闽",
	"zh_ning", "宁",
	"zh_qing", "靑",
	"zh_qiong", "琼",
	"zh_shan", "陕",
	"zh_su", "苏",
	"zh_sx", "晋",
	"zh_wan", "皖",
	"zh_xiang", "湘",
	"zh_xin", "新",
	"zh_yu", "豫",
	"zh_yu1", "渝",
	"zh_yue", "粤",
	"zh_yun", "云",
	"zh_zang", "藏",
	"zh_zhe", "浙"
]

class StatModel(object):
	def load(self, fn):
		self.model = self.model.load(fn)#从文件载入训练好的模型
	def save(self, fn):
		self.model.save(fn)#保存训练好的模型到文件中

class SVM(StatModel):
	def __init__(self, C = 1, gamma = 0.5):
		self.model = cv2.ml.SVM_create()#生成一个SVM模型
		self.model.setGamma(gamma) #设置Gamma参数,demo中是0.5
		self.model.setC(C)# 设置惩罚项, 为:1
		self.model.setKernel(cv2.ml.SVM_RBF)#设置核函数
		self.model.setType(cv2.ml.SVM_C_SVC)#设置SVM的模型类型:SVC是分类模型,SVR是回归模型
	#训练svm
	def train(self, samples, responses):
		self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)#训练
	#字符识别
	def predict(self, samples):
		r = self.model.predict(samples)#预测
		return r[1].ravel()

#来自opencv的sample,用于svm训练
def deskew(img):
	m = cv2.moments(img)
	if abs(m['mu02']) < 1e-2:
		return img.copy()
	skew = m['mu11']/m['mu02']
	M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
	img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
	return img

#来自opencv的sample,用于svm训练
def preprocess_hog(digits):
	samples = []
	for img in digits:
		gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
		gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
		mag, ang = cv2.cartToPolar(gx, gy)
		bin_n = 16
		bin = np.int32(bin_n*ang/(2*np.pi))
		bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
		mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
		hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
		hist = np.hstack(hists)

		# transform to Hellinger kernel
		eps = 1e-7
		hist /= hist.sum() + eps
		hist = np.sqrt(hist)
		hist /= norm(hist) + eps

		samples.append(hist)
	return np.float32(samples)


def save_traindata(model,modelchinese):
	if not os.path.exists("module\\svm.dat"):
		model.save("module\\svm.dat")
	if not os.path.exists("module\\svmchinese.dat"):
		modelchinese.save("module\\svmchinese.dat")

def train_svm():
	#识别英文字母和数字
	model = SVM(C=1, gamma=0.5)
	#识别中文
	modelchinese = SVM(C=1, gamma=0.5)
	if os.path.exists("svm.dat"):
		model.load("svm.dat")
	else:
		chars_train = []
		chars_label = []

		for root, dirs, files in os.walk("train\\chars2"):
			if len(os.path.basename(root)) > 1:
				continue
			root_int = ord(os.path.basename(root))
			for filename in files:
				filepath = os.path.join(root,filename)
				digit_img = cv2.imread(filepath)
				digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
				chars_train.append(digit_img)
				#chars_label.append(1)
				chars_label.append(root_int)

		chars_train = list(map(deskew, chars_train))
		#print(chars_train)
		chars_train = preprocess_hog(chars_train)
		#print(chars_train)
		#chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
		chars_label = np.array(chars_label)
		model.train(chars_train, chars_label)
	if os.path.exists("svmchinese.dat"):
		modelchinese.load("svmchinese.dat")
	else:
		chars_train = []
		chars_label = []
		for root, dirs, files in os.walk("train\\charsChinese"):
			if not os.path.basename(root).startswith("zh_"):
				continue
			pinyin = os.path.basename(root)
			index = provinces.index(pinyin) + PROVINCE_START + 1 #1是拼音对应的汉字
			for filename in files:
				filepath = os.path.join(root,filename)
				digit_img = cv2.imread(filepath)
				digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
				chars_train.append(digit_img)
				#chars_label.append(1)
				chars_label.append(index)
		chars_train = list(map(deskew, chars_train))
		chars_train = preprocess_hog(chars_train)
		#chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
		chars_label = np.array(chars_label)
		print(chars_train.shape)
		modelchinese.train(chars_train, chars_label)

	save_traindata(model,modelchinese)


train_svm()

运行代码后会生成两个模型文件,下面验证两个模型文件。

在这里插入图片描述

import cv2
import numpy as np

import json
import train

SZ = 20          #训练图片长宽
MAX_WIDTH = 1000 #原始图片最大宽度
Min_Area = 2000  #车牌区域允许最大面积
PROVINCE_START = 1000
#读取图片文件
def imreadex(filename):
	return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), cv2.IMREAD_COLOR)

def point_limit(point):
	if point[0] < 0:
		point[0] = 0
	if point[1] < 0:
		point[1] = 0

#根据设定的阈值和图片直方图,找出波峰,用于分隔字符
def find_waves(threshold, histogram):
	up_point = -1#上升点
	is_peak = False
	if histogram[0] > threshold:
		up_point = 0
		is_peak = True
	wave_peaks = []
	for i,x in enumerate(histogram):
		if is_peak and x < threshold:
			if i - up_point > 2:
				is_peak = False
				wave_peaks.append((up_point, i))
		elif not is_peak and x >= threshold:
			is_peak = True
			up_point = i
	if is_peak and up_point != -1 and i - up_point > 4:
		wave_peaks.append((up_point, i))
	return wave_peaks

#根据找出的波峰,分隔图片,从而得到逐个字符图片
def seperate_card(img, waves):
	part_cards = []
	for wave in waves:
		part_cards.append(img[:, wave[0]:wave[1]])
	return part_cards

class CardPredictor:
	def __init__(self):
		#车牌识别的部分参数保存在json中,便于根据图片分辨率做调整
		f = open('config.json')
		j = json.load(f)
		for c in j["config"]:
			if c["open"]:
				self.cfg = c.copy()
				break
		else:
			raise RuntimeError('没有设置有效配置参数')


	def load_svm(self):
		#识别英文字母和数字
		self.model = train.SVM(C=1, gamma=0.5)#SVM(C=1, gamma=0.5)
		#识别中文
		self.modelchinese = train.SVM(C=1, gamma=0.5)#SVM(C=1, gamma=0.5)
		self.model.load("module\\svm.dat")
		self.modelchinese.load("module\\svmchinese.dat")


	def accurate_place(self, card_img_hsv, limit1, limit2, color):
		row_num, col_num = card_img_hsv.shape[:2]
		xl = col_num
		xr = 0
		yh = 0
		yl = row_num
		#col_num_limit = self.cfg["col_num_limit"]
		row_num_limit = self.cfg["row_num_limit"]
		col_num_limit = col_num * 0.8 if color != "green" else col_num * 0.5#绿色有渐变
		for i in range(row_num):
			count = 0
			for j in range(col_num):
				H = card_img_hsv.item(i, j, 0)
				S = card_img_hsv.item(i, j, 1)
				V = card_img_hsv.item(i, j, 2)
				if limit1 < H <= limit2 and 34 < S and 46 < V:
					count += 1
			if count > col_num_limit:
				if yl > i:
					yl = i
				if yh < i:
					yh = i
		for j in range(col_num):
			count = 0
			for i in range(row_num):
				H = card_img_hsv.item(i, j, 0)
				S = card_img_hsv.item(i, j, 1)
				V = card_img_hsv.item(i, j, 2)
				if limit1 < H <= limit2 and 34 < S and 46 < V:
					count += 1
			if count > row_num - row_num_limit:
				if xl > j:
					xl = j
				if xr < j:
					xr = j
		return xl, xr, yh, yl

	def predict(self, car_pic, resize_rate=1):
		if type(car_pic) == type(""):
			img = imreadex(car_pic)
		else:
			img = car_pic
		pic_hight, pic_width = img.shape[:2]

		if resize_rate != 1:
			img = cv2.resize(img, (int(pic_width*resize_rate), int(pic_hight*resize_rate)), interpolation=cv2.INTER_AREA)
			pic_hight, pic_width = img.shape[:2]
		#cv2.imshow('img',img)
		#cv2.waitKey(0)
		print("h,w:", pic_hight, pic_width)
		blur = self.cfg["blur"]
		#高斯去噪
		if blur > 0:
			img = cv2.GaussianBlur(img, (blur, blur), 0)#图片分辨率调整
		oldimg = img
		img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

		#去掉图像中不会是车牌的区域
		kernel = np.ones((20, 20), np.uint8)
		img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
		img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0);

		#找到图像边缘
		ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
		img_edge = cv2.Canny(img_thresh, 100, 200)#边缘检测

		#使用开运算和闭运算让图像边缘成为一个整体
		kernel = np.ones((self.cfg["morphologyr"], self.cfg["morphologyc"]), np.uint8)
		img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel)

		img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel)

		#查找图像边缘整体形成的矩形区域,可能有很多,车牌就在其中一个矩形区域中
		contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
		print('len(contours)', len(contours))#找出区域
		contours = [cnt for cnt in contours if cv2.contourArea(cnt) > Min_Area]
		print('len(contours)', len(contours))#cv2.contourArea计算面积
		#一一排除不是车牌的矩形区域
		car_contours = []
		for cnt in contours:
			rect = cv2.minAreaRect(cnt)#minAreaRect
			area_width, area_height = rect[1]
			if area_width < area_height:
				area_width, area_height = area_height, area_width
			wh_ratio = area_width / area_height#长宽比
			#print(wh_ratio)
			#要求矩形区域长宽比在25.5之间,25.5是车牌的长宽比,其余的矩形排除
			if wh_ratio > 2 and wh_ratio < 5.5:
				car_contours.append(rect)
				box = cv2.boxPoints(rect)#cv2.boxPoints()可获取该矩形的四个顶点坐标。
				print(box)
				box = np.int0(box) #转成整数
				print(box)
			oldimg = cv2.drawContours(oldimg, [box], 0, (0, 0, 255), 2)
			
		print(len(car_contours))

		print("精确定位")
		card_imgs = []
		#矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位
		for rect in car_contours:
			if rect[2] > -1 and rect[2] < 1:#创造角度,使得左、高、右、低拿到正确的值
				angle = 1
			else:
				angle = rect[2]
			rect = (rect[0], (rect[1][0]+5, rect[1][1]+5), angle)#扩大范围,避免车牌边缘被排除

			box = cv2.boxPoints(rect)
			heigth_point = right_point = [0, 0]
			left_point = low_point = [pic_width, pic_hight]
			for point in box:
				if left_point[0] > point[0]:
					left_point = point
				if low_point[1] > point[1]:
					low_point = point
				if heigth_point[1] < point[1]:
					heigth_point = point
				if right_point[0] < point[0]:
					right_point = point

			if left_point[1] <= right_point[1]:#正角度
				new_right_point = [right_point[0], heigth_point[1]]
				pts2 = np.float32([left_point, heigth_point, new_right_point])#字符只是高度需要改变
				pts1 = np.float32([left_point, heigth_point, right_point])
				M = cv2.getAffineTransform(pts1, pts2)
				dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
				point_limit(new_right_point)
				point_limit(heigth_point)
				point_limit(left_point)
				card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
				if(len(card_img)>0):
					card_imgs.append(card_img)

			elif left_point[1] > right_point[1]:#负角度

				new_left_point = [left_point[0], heigth_point[1]]
				pts2 = np.float32([new_left_point, heigth_point, right_point])#字符只是高度需要改变
				pts1 = np.float32([left_point, heigth_point, right_point])
				M = cv2.getAffineTransform(pts1, pts2)
				dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
				point_limit(right_point)
				point_limit(heigth_point)
				point_limit(new_left_point)
				card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
				
				card_imgs.append(card_img)
			#cv2.imshow("card", card_img)
			#cv2.waitKey(0)
		#开始使用颜色定位,排除不是车牌的矩形,目前只识别蓝、绿、黄车牌
		colors = []
		for card_index,card_img in enumerate(card_imgs):
			print(len(card_imgs))
			green = yello = blue = black = white = 0
			card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
			print("card_img_hsv.shape")
			print(card_img_hsv.shape)
			#有转换失败的可能,原因来自于上面矫正矩形出错
			if card_img_hsv is None:
				continue
			row_num, col_num= card_img_hsv.shape[:2]
			card_img_count = row_num * col_num

			for i in range(row_num):
				for j in range(col_num):
					H = card_img_hsv.item(i, j, 0)
					S = card_img_hsv.item(i, j, 1)
					V = card_img_hsv.item(i, j, 2)
					if 11 < H <= 34 and S > 34:#图片分辨率调整
						yello += 1
					elif 35 < H <= 99 and S > 34:#图片分辨率调整
						green += 1
					elif 99 < H <= 124 and S > 34:#图片分辨率调整
						blue += 1

					if 0 < H <180 and 0 < S < 255 and 0 < V < 46:
						black += 1
					elif 0 < H <180 and 0 < S < 43 and 221 < V < 225:
						white += 1
			color = "no"
            #根据HSV判断车牌颜色
			limit1 = limit2 = 0
			if yello*2 >= card_img_count:
				color = "yello"
				limit1 = 11
				limit2 = 34#有的图片有色偏偏绿
			elif green*2 >= card_img_count:
				color = "green"
				limit1 = 35
				limit2 = 99
			elif blue*2 >= card_img_count:
				color = "blue"
				limit1 = 100
				limit2 = 124#有的图片有色偏偏紫
			elif black + white >= card_img_count*0.7:#TODO
				color = "bw"

			colors.append(color)
			print("blue, green, yello, black, white, card_img_count:")
			print(blue,"   " ,green,"   ", yello,"   ", black,"   ", white,"   ", card_img_count)
			print("车牌颜色:",color)
			# cv2.imshow("color", card_img)
			# cv2.waitKey(0)
			if limit1 == 0:
				continue
			#以上为确定车牌颜色
			#以下为根据车牌颜色再定位,缩小边缘非车牌边界
			xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
			if yl == yh and xl == xr:
				continue
			need_accurate = False
			if yl >= yh:
				yl = 0
				yh = row_num
				need_accurate = True
			if xl >= xr:
				xl = 0
				xr = col_num
				need_accurate = True
			card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh-yl)//4 else card_img[yl-(yh-yl)//4:yh, xl:xr]
			if need_accurate:#可能x或y方向未缩小,需要再试一次
				card_img = card_imgs[card_index]
				card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
				xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
				if yl == yh and xl == xr:
					continue
				if yl >= yh:
					yl = 0
					yh = row_num
				if xl >= xr:
					xl = 0
					xr = col_num
			card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh-yl)//4 else card_img[yl-(yh-yl)//4:yh, xl:xr]
		#以上为车牌定位
		#以下为识别车牌中的字符
		predict_result = []
		roi = None
		card_color = None
		for i, color in enumerate(colors):
			if color in ("blue", "yello", "green"):
				card_img = card_imgs[i]
			
				gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
			
				#黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向
				if color == "green" or color == "yello":
					gray_img = cv2.bitwise_not(gray_img)
				ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
				#查找水平直方图波峰
				x_histogram  = np.sum(gray_img, axis=1)
				x_min = np.min(x_histogram)
				x_average = np.sum(x_histogram)/x_histogram.shape[0]
				x_threshold = (x_min + x_average)/2
				wave_peaks = find_waves(x_threshold, x_histogram)
				if len(wave_peaks) == 0:
					print("peak less 0:")
					continue
				#认为水平方向,最大的波峰为车牌区域
				wave = max(wave_peaks, key=lambda x:x[1]-x[0])
				gray_img = gray_img[wave[0]:wave[1]]
				#查找垂直直方图波峰
				row_num, col_num= gray_img.shape[:2]
				#去掉车牌上下边缘1个像素,避免白边影响阈值判断
				gray_img = gray_img[1:row_num-1]
				# cv2.imshow("gray_img", gray_img)#二值化
				# cv2.waitKey(0)
				y_histogram = np.sum(gray_img, axis=0)
				y_min = np.min(y_histogram)
				y_average = np.sum(y_histogram)/y_histogram.shape[0]
				y_threshold = (y_min + y_average)/5#U和0要求阈值偏小,否则U和0会被分成两半

				wave_peaks = find_waves(y_threshold, y_histogram)

		
				#车牌字符数应大于6
				if len(wave_peaks) <= 6:
					print("peak less 1:", len(wave_peaks))
					continue

				wave = max(wave_peaks, key=lambda x:x[1]-x[0])
				max_wave_dis = wave[1] - wave[0]
				#判断是否是左侧车牌边缘
				if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis/3 and wave_peaks[0][0] == 0:
					wave_peaks.pop(0)

				#组合分离汉字
				cur_dis = 0
				for i,wave in enumerate(wave_peaks):
					if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:
						break
					else:
						cur_dis += wave[1] - wave[0]
				if i > 0:
					wave = (wave_peaks[0][0], wave_peaks[i][1])
					wave_peaks = wave_peaks[i+1:]
					wave_peaks.insert(0, wave)

				#去除车牌上的分隔点
				point = wave_peaks[2]
				if point[1] - point[0] < max_wave_dis/3:
					point_img = gray_img[:,point[0]:point[1]]
					if np.mean(point_img) < 255/5:
						wave_peaks.pop(2)

				if len(wave_peaks) <= 6:
					print("peak less 2:", len(wave_peaks))
					continue
				part_cards = seperate_card(gray_img, wave_peaks)
				for i, part_card in enumerate(part_cards):
					#可能是固定车牌的铆钉
					if np.mean(part_card) < 255/5:
						print("a point")
						continue
					part_card_old = part_card
	
					w = part_card.shape[1] // 3
					part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value = [0,0,0])
					part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)
		
					cv2.destroyAllWindows()
	
					part_card = train.preprocess_hog([part_card])#preprocess_hog([part_card])
					if i == 0:
						resp = self.modelchinese.predict(part_card)#第一个字符调用中文svm模型
						charactor = train.provinces[int(resp[0]) - PROVINCE_START]
					else:
						resp = self.model.predict(part_card)#其他字符调用字母数字svm模型
						charactor = chr(resp[0])
					#判断最后一个数是否是车牌边缘,假设车牌边缘被认为是1
					if charactor == "1" and i == len(part_cards)-1:
						if part_card_old.shape[0]/part_card_old.shape[1] >= 8:#1太细,认为是边缘
							print(part_card_old.shape)
							continue
					predict_result.append(charactor)
				roi = card_img
				card_color = color
				break

		return predict_result, roi, card_color#识别到的字符、定位的车牌图像、车牌颜色

if __name__ == '__main__':
	c = CardPredictor()
	c.load_svm()#加载训练好的模型
	img  = cv2.imread("test\\car20.jpg")
	img = cv2.resize(img, (1000, 1000), interpolation=cv2.INTER_AREA)
	r, roi, color = c.predict(img)
	print(r)

运行结果:

车牌颜色: blue
['津', 'N', 'A', 'V', '8', '8', '8']

从结果看比上一节的准确多了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/96507.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Django的博客管理系统

1、克隆仓库https://gitee.com/lylinux/DjangoBlog.git 若失效&#xff1a;https://gitee.com/usutdzxy/DjangoBlog.git 2、环境安装 pip install -Ur requirements.txt3、修改djangoblog/setting.py 修改数据库配置&#xff0c;其他的步骤就按照官方文档。 DATABASES {def…

Git管理本地代码

一、Git配置 当安装完 Git 应该做的第一件事就是设置你的用户名称与邮件地址。 这样做很重要&#xff0c;因为每一个 Git 的提交都会使用这些信息&#xff0c;并且它会写入到你的每一次提交中&#xff0c;不可更改 – global全局配置 通过 --global 选项可以设置全局配置信息 …

算法笔记:球树

1 KD树的问题 算法笔记&#xff1a;KD树_UQI-LIUWJ的博客-CSDN博客 在kd树中&#xff0c;导致性能下降的最核心因素是因为kd-tree中被分割的子空间是一个个的超方体&#xff0c;而求最近邻时使用的是欧式距离&#xff08;超球&#xff09;。超方体与超球体相交的可能性是极高…

【原创】jmeter并发测试计划

bankQPS 创建线程组 设置并发参数 HTTP请求GET 添加HTTP请求 GET请求 查看结果树 HTTP请求 POST 添加HTTP请求 参数必须设置头信息格式&#xff1a; 添加HTTP头信息 查看结果树 可以选择&#xff0c;仅查看错误日志 汇总报告

【CSS】简记CSS效果:通过transition(动画过渡属性)实现侧边栏目滑入滑出

需求 在资金明细的页面中&#xff0c;点击按钮时筛选区域从左侧滑出&#xff0c;完成筛选点击确认后调用接口完成数据查询&#xff0c;筛选区域滑入左侧&#xff1b; 基于微信小程序页面实现 wxml代码 <view><!-- 操作按钮 --><button type"primary&qu…

Go测试之.golden 文件

Go测试中的.golden 文件是干什么用的&#xff1f;请举例说明 在Go语言中&#xff0c;.golden文件通常用于测试中的黄金文件&#xff08;golden files&#xff09;。黄金文件是在测试期间记录预期输出结果的文件。测试用例运行时&#xff0c;黄金文件用于比较实际输出与预期输出…

react18+antd5.x(1):Notification组件的二次封装

antdesign已经给我们提供了很好的组件使用体验&#xff0c;但是我们还需要根据自己的项目业务进行更好的封装&#xff0c;减少我们的代码量&#xff0c;提升开发体验 效果展示 开起来和官网的使用没什么区别&#xff0c;但是我们在使用的时候&#xff0c;进行了二次封装&#…

Java“牵手”1688淘口令转换API接口数据,1688API接口申请指南

1688平台商品淘口令接口是开放平台提供的一种API接口&#xff0c;通过调用API接口&#xff0c;开发者可以获取1688商品的标题、价格、库存、商品快递费用&#xff0c;宝贝ID&#xff0c;发货地&#xff0c;区域ID&#xff0c;快递费用&#xff0c;月销量、总销量、库存、详情描…

ChatGPT AIGC 一个指令总结Python所有知识点

在ChatGPT中,直接输入一个指令就可以生成Python的所有知识点大纲。 非常实用的ChatGPT功能。 AIGC ChatGPT ,BI商业智能, 可视化Tableau, PowerBI, FineReport, 数据库Mysql Oracle, Office, Python ,ETL Excel 2021 实操,函数,图表,大屏可视化 案例实战 http://t.…

【LeetCode75】第四十题 最大层内元素和

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 这道题和LeetCode75的上一题大同小异&#xff0c;都是要我们对二叉树进行层序遍历。 那具体如何层序遍历我再上一题也详细介绍过了&#…

vue2 组件库之vetur提示

当我们开发完自定义UI组件库后&#xff0c;在项目中使用时&#xff0c;想要达到以下提示效果&#xff0c;组件提示与属性提示&#xff0c;有什么解决方案呢&#xff1a; 事实上&#xff0c;这是vetur的功能&#xff0c;原文如下&#xff1a; Component Data | Vetur If a pac…

软件测试实训系统建设方案

一 、系统概述 软件测试实训系统是软件开发过程中的一项重要测试活动&#xff0c;旨在验证不同软件模块或组件之间的集成与交互是否正常。综合测试确保各个模块按照设计要求正确地协同工作&#xff0c;以实现整个软件系统的功能和性能。以下是软件测试实训系统的一般流程和步骤…

基于Jenkins自动打包并部署docker、PHP环境,ansible部署-------从小白到大神之路之学习运维第86天

第四阶段提升 时 间&#xff1a;2023年8月23日 参加人&#xff1a;全班人员 内 容&#xff1a; 基于Jenkins部署docker、PHP环境 目录 一、环境部署 &#xff08;一&#xff09;实验环境&#xff0c;服务器设置 &#xff08;二&#xff09;所有主机关闭防火墙和selinu…

揭秘:房产小程序如何助力售楼业务提升

随着移动互联网的发展&#xff0c;小程序已经成为各行各业进行营销推广的利器之一。对于房地产行业而言&#xff0c;小程序同样具有巨大的潜力。下面&#xff0c;我们将介绍如何使用乔拓云平台开发一款吸睛的房地产营销小程序。 第一步&#xff1a;注册登录乔拓云平台&#xff…

SpringBootWeb案例 Part3

目录 1. 新增员工 1.1 需求 1.2 接口文档 1.3 思路分析 PostMapping RequestBody //把前端传递的JSON数据填充到实体类中 1.4 功能开发 1.5 功能测试 1.6 前后端联调 2. 文件上传 2.1 文件上传简介 Spring中提供了一个API&#xff1a;MultipartFile&#xff0c;使…

自学设计模式(类图、设计原则、单例模式 - 饿汉/懒汉)

设计模式需要用到面向对象的三大特性——封装、继承、多态&#xff08;同名函数具有不同的状态&#xff09; UML类图 eg.—— 描述类之间的关系&#xff08;设计程序之间画类图&#xff09; : public; #: protected; -: private; 下划线: static 属性名:类型&#xff08;默认值…

【微服务部署】06-日志集成

文章目录 1. EFK日志三件套集成1.1 核心组件1.2 部署 2. Exceptionless日志系统2.1 Exceptionless核心特性2.2 Exceptionless部署文件2.3 K8s中使用Exceptionless 1. EFK日志三件套集成 1.1 核心组件 Elasticsearch&#xff08;存储&#xff09;Fluentd&#xff08;收集器&am…

H36M VS 3DPW datasets

1采集设备方面 H36M使用了高精度的多视角摄像机动态捕捉系统获得了非常准确和连贯的3D关节坐标标注。 3DPW使用了单目摄像机与IMU的复合传感系统进行采集,存在一定程度的标注噪声。 2场景环境方面 H36M主要针对室内定向动作,背景单一简洁。 3DPW重点是室外复杂环境中人的自…

CLICK HOUSE

一、clickhouse简介 MPP架构的列式存储数据库&#xff08;DBMS&#xff1a;Database Management System&#xff09;&#xff0c;能够使用 SQL 查询实时生成分析数据报告。ClickHouse的全称是Click Stream&#xff0c;Data WareHouse。 ClickHouse的全称由两部分组成&#xf…

【黑马头条之热点文章kafkaStream】

本笔记内容为黑马头条项目的热点文章-实时计算部分 目录 一、实时流式计算 1、概念 2、应用场景 3、技术方案选型 二、Kafka Stream 1、概述 2、Kafka Streams的关键概念 3、KStream 4、Kafka Stream入门案例编写 5、SpringBoot集成Kafka Stream 三、app端热点文章…