C++中常用的十大排序方法之4——希尔排序

      成长路上不孤单😊😊😊😊😊😊

【😊///计算机爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】

今日分享关于C++中常用的排序方法之4——希尔排序的相关内容!

关于【C++中常用的排序方法之4——希尔排序】

目录:

  • 一、希尔排序的定义
  • 二、希尔排序的发展历史
  • 三、希尔排序的的排序过程
  • 四、希尔排序的基本原理
  • 五、希尔排序的的特点
  • 六、希尔排序的的优点
  • 七、希尔排序的的缺点

希尔排序Shell Sort)

一、希尔排序的定义

希尔排序(Shell's Sort)是插入排序的一种又称“缩小增量排序”(Diminishing Increment Sort),是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因 D.L.Shell 于 1959 年提出而得名。

希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至 1 时,整个文件恰被分成一组,算法便终止。

  

二、希尔排序的发展历史

希尔排序按其设计者希尔(Donald Shell)的名字命名,该算法由希尔在 1959 年所发表的论文“A high-speed sorting procedure” 中所描述。

希尔排序是基于插入排序的以下两点性质而提出改进方法的: 

 1、插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率。

2、但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位。

1961年,IBM 公司的女程序员 Marlene Metzner Norton(玛琳·梅茨纳·诺顿)首次使用 FORTRAN 语言编程实现了希尔排序算法。在其程序中使用了一种简易有效的方法设置希尔排序所需的增量序列:第一个增量取待排序记录个数的一半,然后逐次减半,最后一个增量为 1。该算法后来被称为 Shell-Metzner 算法 ,Metzner 本人在2003年的一封电子邮件中说道:“我没有为这种算法做任何事,我的名字不应该出现在算法的名字中。”

三、希尔排序的排序过程

1、缩小增量

希尔排序属于插入类排序,是将整个有序序列分割成若干小的子序列分别进行插入排序

排序过程:先取一个正整数d1数组元素放一组,组内进行直接插入排序;然后取d2

三趟结果

04 13 27 38 49 49 55 65 76 97

2、Shell排序

Shell排序的算法实现:

1. 不设监视哨的算法描述

void ShellPass(SeqList R,int d)

{//希尔排序中的一趟排序,d为当前增量

for(i=d+1;i

if(R[ i ].key

R[0]=R[i];j=i-d; //R[0]只是暂存单元,不是哨兵

do {//查找R的插入位置

R[j+d]=R[j]; //后移记录

j=j-d; //查找前一记录

}while(j>0&&R[0].key

R[j+d]=R[0]; //插入R到正确的位置上

} //endif

该方法实质上是一种分组插入方法

比较相隔较远距离(称为增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量对它进行分组,在每组中再进行排序。当增量减到1时,整个要排序的数被分成一组,排序完成。

一般的初次取序列的一半为增量,以后每次减半,直到增量为1。

给定实例的shell排序的排序过程

假设待排序文件有10个记录,其关键字分别是:

49,38,65,97,76,13,27,49,55,04。

增量序列的取值依次为:

5,2,1

四、‌希尔排序的基本原理

希尔排序是基于插入排序的一种改进算法。它将整个待排序的记录序列分割成若干子序列,分别进行直接插入排序。然后逐渐减小间隔,再次进行插入排序,直到整个序列变为有序。希尔排序通过分组插入的方式,每次比较相距较远的元素,从而减少了逆序对的数量,提高了排序效率。

五、希尔排序的特点

希尔排序‌是一种高效的排序算法,由美国计算机科学家Donald Shell于1959年提出。它是插入排序的一种改进版本,通过分组插入排序和缩小增量的方式,大幅度减少了逆序对的数量,从而提高了排序效率。以下是希尔排序的主要特点:

 ‌分组插入排序‌:希尔排序将数组分成若干个子序列,每个子序列通过插入排序进行排序。由于子序列的长度较短,插入排序的时间复杂度较低,从而提高了排序效率‌。

缩小增量‌:希尔排序通过逐步缩小增量(通常采用二分法递减增量),将数组分成更小的子序列进行排序。增量最终减小到1时,整个数组进行一次插入排序‌。

大幅度减少逆序对‌:由于希尔排序是通过间隔分组进行插入排序的,每次排序都会将相距较远的元素进行比较和交换,从而大幅度减少了逆序对的数量。逆序对的数量是衡量一个排序算法效率的重要指标,逆序对越少,排序效率越高‌。

非稳定性‌:希尔排序是一种非稳定的排序算法。在排序过程中,相同大小的元素可能会发生交换,导致原来相对顺序的改变。尽管如此,希尔排序在实际应用中并不影响排序结果的正确性‌。

适用场景‌:希尔排序适用于大部分情况,尤其适用于部分有序的数据集。当数据集接近有序时,希尔排序的效率非常高‌。 

六、希尔排序的优点

希尔排序的优点主要包括以下几个方面‌:‌

减少比较次数‌:希尔排序通过分组插入的方式进行排序,每次比较相距较远的元素,从而大幅度减少了逆序对的数量,提高了排序效率。

高效处理大数据量‌:希尔排序在处理大量数据时表现出色,其时间复杂度通常为O(n^1.3),并且空间复杂度为O(1),这意味着它需要的额外空间非常小。

简单易实现‌:希尔排序的实现相对简单,易于理解和编写代码。

适用于大规模数据‌:希尔排序特别适合处理大规模数据,因为它通过分组和逐步减小增量来排序,避免了直接对整个数据集进行排序的时间和空间复杂度过高的问题。

七、希尔排序的缺点

非稳定性‌:希尔排序是一种非稳定的排序算法,可能会改变相同元素的相对顺序。

性能受增量序列影响‌:增量序列的选择对希尔排序的性能有很大影响。如果增量序列选择不当,可能会导致时间复杂度退化为O(n^2)甚至更差。

时间复杂度不确定‌:希尔排序的时间复杂度并不固定,通常认为是O(n^1.3),但最坏情况下可能会更差。

七、插入排序的缺点

插入排序的主要缺点包括以下几个方面‌:

时间复杂度较高‌:插入排序的时间复杂度在最坏的情况下是O(n^2),其中n是待排序元素的数量。这意味着当数据量较大时,插入排序的效率会显著下降,不适合处理大规模数据集‌。

不适用于部分有序的数据‌:虽然插入排序在数据部分有序的情况下表现较好,但如果数据已经接近排序状态,其他排序算法(如归并排序或快速排序)通常会更高效‌。

不稳定‌:插入排序是一种不稳定的排序算法,相同的元素在排序后可能会改变它们原有的顺序。这意味着如果输入数组中有重复的元素,排序后这些元素的相对顺序可能会发生变化‌。

不适合实时应用‌:由于插入排序的时间复杂度较高,它不适合需要快速响应的应用场景,如实时数据处理系统‌。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/963860.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

字节iOS面试经验分享:HTTP与网络编程

字节iOS面试经验分享:HTTP与网络编程 🌟 嗨,我是LucianaiB! 🌍 总有人间一两风,填我十万八千梦。 🚀 路漫漫其修远兮,吾将上下而求索。 目录 字节iOS面试经验分享:HTT…

音视频入门基础:RTP专题(7)——RTP协议简介

一、引言 本文对RTP协议进行简介。在简介之前,请各位先下载RTP的官方文档《RFC 3550》和《RFC 3551》。《RFC 3550》总共有89页,《RFC 3551》总共有44页。本文下面所说的“页数”是指在pdf阅读器中显示的页数: 二、RTP协议简介 根据《RFC 35…

SQLGlot:用SQLGlot解析SQL

几十年来,结构化查询语言(SQL)一直是与数据库交互的实际语言。在一段时间内,不同的数据库在支持通用SQL语法的同时演变出了不同的SQL风格,也就是方言。这可能是SQL被广泛采用和流行的原因之一。 SQL解析是解构SQL查询…

Java 大视界 -- Java 大数据在智能电网中的应用与发展趋势(71)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…

想表示消息返回值为Customer集合

道奈特(240***10) 14:34:55 EA中序列图。我想表示消息返回值为 Customer 集合。目前只有一个Customer实体类,我需要另外新建一个CustomerList 类吗? 潘加宇(35***47) 17:01:26 不需要。如果是分析,在类的操作中,定义一个参数&…

01.双Android容器解决方案

目录 写在前面 一,容器 1.1 容器的原理 1.1.1 Namespace 1.1.2 Cgroups(Control Groups) 1.1.3 联合文件系统(Union File System) 1.2 容器的应用 1.2.1 微服务架构 1.2.2 持续集成和持续部署(CI/…

【Elasticsearch】硬件资源优化

🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…

2025-工具集合整理

科技趋势 github-rank 🕷️Github China/Global User Ranking, Global Warehouse Star Ranking (Github Action is automatically updated daily). 科技爱好者周刊 制图工具 D2 D2 A modern diagram scripting language that turns text to diagrams 文档帮助 …

二叉树--链式存储

1我们之前学了二叉树的顺序存储(这种顺序存储的二叉树被称为堆),我们今天来学习一下二叉树的链式存储: 我们使用链表来表示一颗二叉树: ⽤链表来表⽰⼀棵⼆叉树,即⽤链来指⽰元素的逻辑关系。通常的⽅法是…

Java 23新特性

文章目录 Java 23新特性一、引言二、Markdown文档注释(JEP 467)示例 三、ZGC:默认的分代模式(JEP 474)1. 为什么要引入分代模式2. 使用分代模式的优势3. 如何启用分代模式 四、隐式声明的类和实例主方法(JE…

【数据结构】_链表经典算法OJ:复杂链表的复制

目录 1. 题目链接及描述 2. 解题思路 3. 程序 1. 题目链接及描述 题目链接:138. 随机链表的复制 - 力扣(LeetCode) 题目描述: 给你一个长度为 n 的链表,每个节点包含一个额外增加的随机指针 random ,…

Shell篇-字符串处理

目录 1.变量引用 2.获取字符串长度 3.字符串截取 4.删除子字符串 5.字符串替换 总结: Bash(Shell 脚本)中的字符串处理语法。以下是对其的介绍和总结:Bash 变量可以使用不同的语法来获取、修改和删除字符串的内容。图片中列…

STM32 TIM定时器配置

TIM简介 TIM(Timer)定时器 定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断 16位计数器、预分频器、自动重装寄存器的时基单元,在72MHz计数时钟下可以实现最大59.65s的定时 不仅具备基本的定时中断功能&#xff…

Spring Security(maven项目) 3.0.2.9版本 --- 改

前言: 通过实践而发现真理,又通过实践而证实真理和发展真理。从感性认识而能动地发展到理性认识,又从理性认识而能动地指导革命实践,改造主观世界和客观世界。实践、认识、再实践、再认识,这种形式,循环往…

数据结构(1)——算法时间复杂度与空间复杂度

目录 前言 一、算法 1.1算法是什么? 1.2算法的特性 1.有穷性 2.确定性 3.可行性 4.输入 5.输出 二、算法效率 2.1衡量算法效率 1、事后统计方法 2、事前分析估计方法 2.2算法的复杂度 2.3时间复杂度 2.3.1定义 2.3.2大O渐进表示法 2.3.3常见时间复…

巧妙利用数据结构优化部门查询

目录 一、出现的问题 部门树接口超时 二、问题分析 源代码分析 三、解决方案 具体实现思路 四、优化的效果 一、出现的问题 部门树接口超时 无论是在A项目还是在B项目中,都存在类似的页面,其实就是一个部门列表或者叫组织列表。 从页面的展示形式…

pycharm 中的 Mark Directory As 的作用是什么?

文章目录 Mark Directory As 的作用PYTHONPATH 是什么PYTHONPATH 作用注意事项 Mark Directory As 的作用 可以查看官网:https://www.jetbrains.com/help/pycharm/project-structure-dialog.html#-9p9rve_3 我们这里以 Mark Directory As Sources 为例进行介绍。 这…

机器学习10

自定义数据集 使用scikit-learn中svm的包实现svm分类 代码 import numpy as np import matplotlib.pyplot as pltclass1_points np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4, 1.1]])class2_points np.array([[3.2, 3.2],[3.7, 2.9],…

二叉树——429,515,116

今天继续做关于二叉树层序遍历的相关题目,一共有三道题,思路都借鉴于最基础的二叉树的层序遍历。 LeetCode429.N叉树的层序遍历 这道题不再是二叉树了,变成了N叉树,也就是该树每一个节点的子节点数量不确定,可能为2&a…

WPF进阶 | WPF 样式与模板:打造个性化用户界面的利器

WPF进阶 | WPF 样式与模板:打造个性化用户界面的利器 一、前言二、WPF 样式基础2.1 什么是样式2.2 样式的定义2.3 样式的应用 三、WPF 模板基础3.1 什么是模板3.2 控件模板3.3 数据模板 四、样式与模板的高级应用4.1 样式继承4.2 模板绑定4.3 资源字典 五、实际应用…