【机器学习篇】K-Means 算法详解:从理论到实践的全面解析

在这里插入图片描述

网罗开发 (小红书、快手、视频号同名)

  大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。

图书作者:《ESP32-C3 物联网工程开发实战》
图书作者:《SwiftUI 入门,进阶与实战》
超级个体:COC上海社区主理人
特约讲师:大学讲师,谷歌亚马逊分享嘉宾
科技博主:极星会首批签约作者

文章目录

    • 摘要
    • 引言
    • K-Means 算法原理
    • K-Means 算法的使用步骤
    • 使用 K-Means 进行聚类的实现
      • 代码示例
      • 代码解释
    • QA 环节
    • 总结
    • 未来展望
    • 参考资料

摘要

K-Means 是一种广泛应用的聚类算法,用于将数据集分组为 K 个簇。由于其简单易懂和高效的计算性能,K-Means 被广泛应用于各种数据分析任务中。本文将详细讲解 K-Means 的基本算法原理,使用步骤,并通过代码示例展示其在 Python 中的实现,帮助读者更好地理解和应用该算法。

引言

在机器学习领域,聚类是无监督学习中的一种重要方法。K-Means 聚类算法因其简单、高效且易于实现,成为了最受欢迎的聚类算法之一。然而,对于许多初学者而言,K-Means 的工作原理常常难以理解。本文将从基础的概念讲起,逐步带你理解 K-Means 算法,并通过具体的代码示例展示如何在实际项目中使用它进行聚类分析。

K-Means 算法原理

K-Means 算法的核心思想是将数据集分为 K 个簇,每个簇由与簇中心最接近的点组成。算法的步骤如下:

  1. 初始化:随机选择 K 个数据点作为初始簇中心。
  2. 分配阶段:将每个数据点分配到距离其最近的簇中心。
  3. 更新阶段:计算每个簇的新的簇中心(即簇内所有点的平均值)。
  4. 重复:重复步骤 2 和 3,直到簇中心不再变化或达到指定的迭代次数。

K-Means 算法的使用步骤

  1. 选择 K 值:首先确定簇的数量 K。可以通过领域知识、经验、肘部法则(Elbow Method)等方法来选择最优的 K 值。
  2. 数据标准化:确保数据的每个特征具有相同的尺度。标准化可以通过减去均值、除以标准差等方法完成。
  3. 运行 K-Means 算法:使用算法实现将数据聚类为 K 个簇。
  4. 结果评估:使用聚类的内部度量(如 SSE 或 Silhouette Score)来评估聚类效果。

使用 K-Means 进行聚类的实现

以下是一个简单的 K-Means 聚类算法实现,使用了 Python 的 sklearn 库。

代码示例

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler

# 生成一个示例数据集
X, y = make_blobs(n_samples=300, centers=4, cluster_std=1.0, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 使用 KMeans 聚类
kmeans = KMeans(n_clusters=4, random_state=42)
kmeans.fit(X_scaled)

# 获取聚类的标签
y_kmeans = kmeans.predict(X_scaled)

# 可视化聚类结果
plt.scatter(X_scaled[:, 0], X_scaled[:, 1], c=y_kmeans, s=50, cmap='viridis')

# 绘制簇的中心
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.5, marker='X')
plt.title("K-Means 聚类结果")
plt.xlabel("特征 1")
plt.ylabel("特征 2")
plt.show()

代码解释

  1. 数据生成:使用 make_blobs 函数生成一个有 4 个簇的数据集,适合用来演示 K-Means 聚类。
  2. 标准化:使用 StandardScaler 对数据进行标准化处理,确保每个特征在相同的尺度上,避免某些特征的影响过大。
  3. KMeans 聚类:使用 KMeans 类初始化模型,指定簇的数量为 4,并将数据拟合到模型中。
  4. 可视化结果:使用 matplotlib 绘制聚类结果,并显示簇的中心。

QA 环节

Q1: 如何选择 K 的值?
A1: 常用的方法有肘部法则(Elbow Method)和轮廓系数(Silhouette Score)。肘部法则通过绘制不同 K 值的误差平方和(SSE)图,选择 “肘部” 处的 K 值。轮廓系数则衡量聚类的紧密性和分离度,值越高越好。

Q2: K-Means 聚类的局限性有哪些?
A2: K-Means 对初始簇中心选择敏感,容易受到噪声和异常值的影响。同时,K-Means 假设簇是球形的,不适合处理非球形簇或密度不均匀的情况。

总结

K-Means 算法是一个简单且高效的聚类方法,适用于各种数据分析任务。通过本文的讲解与示例,读者应该能够掌握 K-Means 的基本原理,并通过 Python 实现聚类分析。K-Means 的优势在于其易于理解和实现,但也存在一些局限性,读者可以在实际应用中结合其他算法一起使用。

未来展望

  • K-Means 改进:研究更先进的聚类算法,如 DBSCAN 和 Mean Shift,以应对 K-Means 的局限性。
  • 大数据处理:如何在大规模数据集上高效实现 K-Means 聚类,并结合分布式计算框架如 Spark。
  • 自动选择 K 值:发展更多自动化方法来选择最优的 K 值,减少人工干预。

参考资料

  1. K-Means 聚类算法 - Wikipedia
  2. Scikit-learn 官方文档
  3. 机器学习实战

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/963740.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

GWO优化LSBooST回归预测matlab

灰狼优化算法(Grey Wolf Optimizer,简称 GWO),是一种群智能优化算法,由澳大利亚格里菲斯大学的 Mirjalii 等人于 2014 年提出。该算法的设计灵感源自灰狼群体的捕食行为,核心思想是模仿灰狼社会的结构与行为…

图形学笔记 - 5-光线追踪 - 辐射度量学

文章目录 辐射度量学辐射能和通量(功率)Radiant Energy and Flux (Power)辐射强度 Radiant Intensity辐照度Irradiance朗伯余弦定律Lambert’s Cosine Law Radiance辐亮度Incident Radiance入射辐亮度Exiting Radiance出射辐亮度 双向反射分布函数 Bidir…

低代码产品表单渲染架构

在React和Vue没有流行起来的时候,低代码产品的表单渲染设计通常会使用操作Dom的方式实现。 下面是一个表单的例子: 产品层 用户通过打开表单,使用不同业务场景业务下的表单页面,中间的Render层就是技术实现。 每一个不同业务的表单…

游戏引擎 Unity - Unity 设置为简体中文、Unity 创建项目

Unity Unity 首次发布于 2005 年,属于 Unity Technologies Unity 使用的开发技术有:C# Unity 的适用平台:PC、主机、移动设备、VR / AR、Web 等 Unity 的适用领域:开发中等画质中小型项目 Unity 适合初学者或需要快速上手的开…

Sentinel 断路器在Spring Cloud使用

文章目录 Sentinel 介绍同类对比微服务雪崩问题问题原因问题解决方案请求限流线程隔离失败处理服务熔断解决雪崩问题的常见方案有哪些? Sentineldocker 安装账号/ 密码项目导入簇点链路请求限流线程隔离Fallback服务掉线时的处理流程 服务熔断 Sentinel 介绍 随着微…

我们信仰AI?从神明到人工智能——信任的进化

信任的进化: 信任是我们最宝贵的资产。而现在,它正像黑色星期五促销的廉价平板电视一样,被一点点拆解。在过去,世界很简单:人们相信晚间新闻、那些满是灰尘书籍的教授,或者手持病历、眉头紧锁的医生。而如…

51单片机 05 矩阵键盘

嘻嘻,LCD在RC板子上可以勉强装上,会有一点歪。 一、矩阵键盘 在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式;采用逐行或逐列的“扫描”,就可以读出任何位置按键的状态。&#xf…

OpenCV4,快速入门,Windows 系统 OpenCV4.10.0 开发环境搭建

文章目录 1. 摘要2. OpenCV 4.10.02. 环境配置2.1 配置包含目录2.2 配置库目录2.3 配置链接器2.4 配置环境变量并重启VS 3. 编写测试代码 1. 摘要 本文详细介绍在Windows系统下配置OpenCV 4.10开发环境的步骤,适用于Visual Studio 2022等C开发场景。内容涵盖&#…

unity学习26:用Input接口去监测: 鼠标,键盘,虚拟轴,虚拟按键

目录 1 用Input接口去监测:鼠标,键盘,虚拟轴,虚拟按键 2 鼠标 MouseButton 事件 2.1 鼠标的基本操作 2.2 测试代码 2.3 测试情况 3 键盘Key事件 3.1 键盘的枚举方式 3.2 测试代码同上 3.3 测试代码同上 3.4 测试结果 4…

FreeRTOS从入门到精通 第十三章(信号量)

参考教程:【正点原子】手把手教你学FreeRTOS实时系统_哔哩哔哩_bilibili 一、信号量知识回顾 1、概述 (1)信号量是一种解决同步问题的机制,可以实现对共享资源的有序访问,FreeRTOS中使用的是二值信号量、计数型信号…

业务系统文件上传和互传如何做到高效又安全?

在当今数字化的商业环境中,企业越来越依赖于高效的业务系统来处理日常运营。无论是金融、医疗、能源还是政府机构,内部各类业务系统如OA、供应商管理系统等都需要终端用户上传各种类型的文件附件。然而,在确保这些文件能够快速而准确地上传和…

四、GPIO中断实现按键功能

4.1 GPIO简介 输入输出(I/O)是一个非常重要的概念。I/O泛指所有类型的输入输出端口,包括单向的端口如逻辑门电路的输入输出管脚和双向的GPIO端口。而GPIO(General-Purpose Input/Output)则是一个常见的术语&#xff0c…

数据结构:时间复杂度

文章目录 为什么需要时间复杂度分析?一、大O表示法:复杂度的语言1.1 什么是大O?1.2 常见复杂度速查表 二、实战分析:解剖C语言代码2.1 循环结构的三重境界单层循环:线性时间双重循环:平方时间动态边界循环&…

C++ Primer 自定义数据结构

欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…

035 搜索之DFS基础

DFS:深度优先搜索——本质上是暴力枚举,尽可能一条路走到底,走不了回退 1.DFS与n重循环 例:给定一个数字x,将其拆分为3个正整数,后一个要求大于前一个,给出方案。 分析:这种情况下…

【系统迁移】将系统迁移到新硬盘中(G15 5520)

文章目录 前言问题描述解决步骤(红色为 debug 步骤)参考文献 前言 参数: 电脑 dell g15 5520硬盘:1T 自带硬盘 海力士 2230 -> 2T 西数蓝盘 2280 问题描述 电脑硬盘过小(且只有一个接口),将…

大模型综合性能考题汇总

- K1.5长思考版本 一、创意写作能力 题目1:老爸笑话 要求:写五个原创的老爸笑话。 考察点:考察模型的幽默感和创意能力,以及对“原创”要求的理解和执行能力。 题目2:创意故事 要求:写一篇关于亚伯拉罕…

openeuler 22.03 lts sp4 使用 cri-o 和 静态 pod 的方式部署 k8s-v1.32.0 高可用集群

前情提要 整篇文章会非常的长…可以选择性阅读,另外,这篇文章是自己学习使用的,用于生产,还请三思和斟酌 静态 pod 的部署方式和二进制部署的方式是差不多的,区别在于 master 组件的管理方式是 kubectl 还是 systemctl有 kubeadm 工具,为什么还要用静态 pod 的方式部署?…

Pluto固件编译笔记

前段时间我已经做到在电脑上交叉编译一个简单的c/c程序,然后复制到pluto上运行。 要做到这一点,其实参考adi pluto官网的wiki就能做到了。 但这样有几个问题,只能做到简易程序,如果程序复杂,要调用更多库而SYSROOT里…

【产品经理学习案例——AI翻译棒出海业务】

前言: 本文主要讲述了硬件产品在出海过程中,翻译质量、翻译速度和本地化落地策略是硬件产品规划需要考虑的核心因素。针对不同国家,需要优化翻译质量和算法,关注市场需求和文化差异,以便更好地满足当地用户的需求。同…