【深度学习】softmax回归的简洁实现

softmax回归的简洁实现

我们发现(通过深度学习框架的高级API能够使实现)(softmax)线性(回归变得更加容易)。
同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。
本节继续使用Fashion-MNIST数据集,并保持批量大小为256。

import torch
from torch import nn
from d2l import torch as d2l

初始化模型参数

[softmax回归的输出层是一个全连接层]。
因此,为了实现我们的模型,我们只需在Sequential中添加一个带有10个输出的全连接层。
同样,在这里Sequential并不是必要的,但它是实现深度模型的基础。
我们仍然以均值0和标准差0.01随机初始化权重。

'''
PyTorch不会隐式地调整输入的形状。
因此,我们在线性层前定义了展平层(flatten),来调整网络输入的形状
'''
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))


def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);
  • nn.Sequential
    这是 PyTorch 里的一个容器模块,
    其功能是按顺序依次排列多个神经网络层。
    在执行前向传播时,输入数据会依照层的先后顺序依次通过各个层。
  • nn.Flatten()
    该层的主要作用是把输入的多维张量展平为一维张量。
    方便后续输入到全连接层。
  • nn.Linear(784, 10)
    这是一个全连接层(线性层)。
    全连接层会对输入的 784 维向量进行线性变换,输出一个 10 维的向量。
  • net.apply(init_weights)
    applynn.Module 类的一个方法,它会递归地把指定的函数(这里是 init_weights)应用到 net 网络的每一个子模块上。也就是说,对于 net 中的每个子层,都会调用 init_weights 函数进行权重初始化。

重新审视Softmax的实现

在前面例子中,我们计算了模型的输出,然后将此输出送入交叉熵损失。

从数学上讲,这是一件完全合理的事情。

然而,从计算角度来看,指数可能会造成数值稳定性问题。

回想一下,
softmax函数 y ^ j = exp ⁡ ( o j ) ∑ k exp ⁡ ( o k ) \hat y_j = \frac{\exp(o_j)}{\sum_k \exp(o_k)} y^j=kexp(ok)exp(oj)
其中 y ^ j \hat y_j y^j是预测的概率分布。 o j o_j oj是未规范化的预测 o \mathbf{o} o的第 j j j个元素。如果 o k o_k ok中的一些数值非常大,那么 exp ⁡ ( o k ) \exp(o_k) exp(ok)可能大于数据类型容许的最大数字,即上溢(overflow)。
这将使分母或分子变为inf(无穷大),
最后得到的是0、infnan(不是数字)的 y ^ j \hat y_j y^j
在这些情况下,我们无法得到一个明确定义的交叉熵值。

解决这个问题的一个技巧是:
在继续softmax计算之前,先从所有 o k o_k ok中减去 max ⁡ ( o k ) \max(o_k) max(ok)
这里可以看到每个 o k o_k ok按常数进行的移动不会改变softmax的返回值:

y ^ j = exp ⁡ ( o j − max ⁡ ( o k ) ) exp ⁡ ( max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) exp ⁡ ( max ⁡ ( o k ) ) = exp ⁡ ( o j − max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) . \begin{aligned} \hat y_j & = \frac{\exp(o_j - \max(o_k))\exp(\max(o_k))}{\sum_k \exp(o_k - \max(o_k))\exp(\max(o_k))} \\ & = \frac{\exp(o_j - \max(o_k))}{\sum_k \exp(o_k - \max(o_k))}. \end{aligned} y^j=kexp(okmax(ok))exp(max(ok))exp(ojmax(ok))exp(max(ok))=kexp(okmax(ok))exp(ojmax(ok)).

在减法和规范化步骤之后,可能有些 o j − max ⁡ ( o k ) o_j - \max(o_k) ojmax(ok)具有较大的负值。
由于精度受限, exp ⁡ ( o j − max ⁡ ( o k ) ) \exp(o_j - \max(o_k)) exp(ojmax(ok))将有接近零的值,即下溢(underflow)。
这些值可能会四舍五入为零,使 y ^ j \hat y_j y^j为零,
并且使得 log ⁡ ( y ^ j ) \log(\hat y_j) log(y^j)的值为-inf
反向传播几步后,我们可能会发现自己面对一屏幕可怕的nan结果。

尽管我们要计算指数函数,但我们最终在计算交叉熵损失时会取它们的对数。
通过将softmax和交叉熵结合在一起,可以避免反向传播过程中可能会困扰我们的数值稳定性问题。
如下面的等式所示,我们避免计算 exp ⁡ ( o j − max ⁡ ( o k ) ) \exp(o_j - \max(o_k)) exp(ojmax(ok))
而可以直接使用 o j − max ⁡ ( o k ) o_j - \max(o_k) ojmax(ok),因为 log ⁡ ( exp ⁡ ( ⋅ ) ) \log(\exp(\cdot)) log(exp())被抵消了。

log ⁡ ( y ^ j ) = log ⁡ ( exp ⁡ ( o j − max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) ) = log ⁡ ( exp ⁡ ( o j − max ⁡ ( o k ) ) ) − log ⁡ ( ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) ) = o j − max ⁡ ( o k ) − log ⁡ ( ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) ) . \begin{aligned} \log{(\hat y_j)} & = \log\left( \frac{\exp(o_j - \max(o_k))}{\sum_k \exp(o_k - \max(o_k))}\right) \\ & = \log{(\exp(o_j - \max(o_k)))}-\log{\left( \sum_k \exp(o_k - \max(o_k)) \right)} \\ & = o_j - \max(o_k) -\log{\left( \sum_k \exp(o_k - \max(o_k)) \right)}. \end{aligned} log(y^j)=log(kexp(okmax(ok))exp(ojmax(ok)))=log(exp(ojmax(ok)))log(kexp(okmax(ok)))=ojmax(ok)log(kexp(okmax(ok))).

我们也希望保留传统的softmax函数,以备我们需要评估通过模型输出的概率。
但是,我们没有将softmax概率传递到损失函数中,
而是[在交叉熵损失函数中传递未规范化的预测,并同时计算softmax及其对数],
这是一种类似"LogSumExp技巧"的聪明方式。

loss = nn.CrossEntropyLoss(reduction='none')
  • nn.CrossEntropyLoss
    nn.CrossEntropyLoss 是 PyTorch 中用于计算交叉熵损失的类。
    在分类问题中,它结合了 nn.LogSoftmax()nn.NLLLoss() 两个操作,适用于多分类任务。其输入通常是模型的原始输出(未经过 Softmax 激活函数处理)和真实标签。
  • reduction=‘none’
    reductionnn.CrossEntropyLoss 类的一个重要参数,它控制着如何对每个样本的损失进行汇总,具体有以下几种取值:
    • 'none':不进行任何汇总操作,直接返回每个样本的损失值,返回的结果是一个与输入样本数量相同的张量。
    • 'mean':(默认值)对每个样本的损失求平均值,返回一个标量值。
    • 'sum':对每个样本的损失求和,返回一个标量值。

优化算法

在这里,我们(使用学习率为0.1的小批量随机梯度下降作为优化算法)。
这与我们在线性回归例子中的相同,这说明了优化器的普适性。

trainer = torch.optim.SGD(net.parameters(), lr=0.1)

net.parameters() 是一个生成器,它会返回模型中所有需要学习的参数(如权重和偏置)。这些参数会被传递给优化器,以便优化器在训练过程中对它们进行更新。
torch.optim.SGD 是 PyTorch 中实现随机梯度下降优化算法的类。它接受模型的参数和一些超参数作为输入,用于更新模型的参数。

训练

接下来我们[调用] 之前(定义的训练函数来训练模型)。

num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/963321.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ESP32-c3实现获取土壤湿度(ADC模拟量)

1硬件实物图 2引脚定义 3使用说明 4实例代码 // 定义土壤湿度传感器连接的模拟输入引脚 const int soilMoisturePin 2; // 假设连接到GPIO2void setup() {// 初始化串口通信Serial.begin(115200); }void loop() {// 读取土壤湿度传感器的模拟值int sensorValue analogRead…

【python】python油田数据分析与可视化(源码+数据集)【独一无二】

👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。 【python】python油田数据分析与可视化&#xff08…

代码讲解系列-CV(一)——CV基础框架

文章目录 一、环境配置IDE选择一套完整复现安装自定义cuda算子 二、Linux基础文件和目录操作查看显卡状态压缩和解压 三、常用工具和pipeline远程文件工具版本管理代码辅助工具 随手记录下一个晚课 一、环境配置 pytorch是AI框架用的很多,或者 其他是国内的框架 an…

HTB:Alert[WriteUP]

目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 使用ffuf对alert.htb域名进行子域名FUZZ 使用go…

小红的合数寻找

A-小红的合数寻找_牛客周赛 Round 79 题目描述 小红拿到了一个正整数 x,她希望你在 [x,2x] 区间内找到一个合数,你能帮帮她吗? 一个数为合数,当且仅当这个数是大于1的整数,并且不是质数。 输入描述 在一行上输入一…

Linux环境下的Java项目部署技巧:安装 Mysql

查看 myslq 是否安装: rpm -qa|grep mysql 如果已经安装,可执行命令来删除软件包: rpm -e --nodeps 包名 下载 repo 源: http://dev.mysql.com/get/mysql80-community-release-el7-7.noarch.rpm 执行命令安装 rpm 源(根据下载的…

基于springboot+vue的哈利波特书影音互动科普网站

开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…

在React中使用redux

一、首先安装两个插件 1.Redux Toolkit 2.react-redux 第一步:创建模块counterStore 第二步:在store的入口文件进行子模块的导入组合 第三步:在index.js中进行store的全局注入 第四步:在组件中进行使用 第五步:在组件中…

记录 | 基于MaxKB的文字生成视频

目录 前言一、安装SDK二、创建视频函数库三、调试更新时间 前言 参考文章:如何利用智谱全模态免费模型,生成大家都喜欢的图、文、视并茂的文章! 自己的感想 本文记录了创建文字生成视频的函数库的过程。如果想复现本文,需要你逐一…

Redis|前言

文章目录 什么是 Redis?Redis 主流功能与应用 什么是 Redis? Redis,Remote Dictionary Server(远程字典服务器)。Redis 是完全开源的,使用 ANSIC 语言编写,遵守 BSD 协议,是一个高性…

安全防护前置

就业概述 网络安全工程师/安全运维工程师/安全工程师 安全架构师/安全专员/研究院(数学要好) 厂商工程师(售前/售后) 系统集成工程师(所有计算机知识都要会一点) 学习目标 前言 网络安全事件 蠕虫病毒--&…

开源2 + 1链动模式AI智能名片S2B2C商城小程序视角下从产品经营到会员经营的转型探究

摘要:本文聚焦于开源2 1链动模式AI智能名片S2B2C商城小程序,深入探讨在其应用场景下,企业从产品经营向会员经营转型的必要性与策略。通过分析如何借助该平台优化会员权益与价值,解决付费办卡的接受度问题,揭示其在提升…

让banner.txt可以自动读取项目版本

文章目录 1.sunrays-dependencies1.配置插件2.pluginManagement统一指定版本 2.common-log4j2-starter1.banner.txt使用$ 符号取出2.查看效果 1.sunrays-dependencies 1.配置插件 <!-- 为了让banner.txt自动获取版本号 --><plugin><groupId>org.apache.mave…

音视频多媒体编解码器基础-codec

如果要从事编解码多媒体的工作&#xff0c;需要准备哪些更为基础的内容&#xff0c;这里帮你总结完。 因为数据类型不同所以编解码算法不同&#xff0c;分为图像、视频和音频三大类&#xff1b;因为流程不同&#xff0c;可以分为编码和解码两部分&#xff1b;因为编码器实现不…

openmv运行时突然中断并且没断联只是跟复位了一样

就是 # 内存不足时硬件复位 except MemoryError as me: print("Memory Error:", me) pyb.hard_reset() # 内存不足时硬件复位 很有可能是你的代码加了内存溢出的复位&#xff0c;没加的话他会报错的

Redis集群理解以及Tendis的优化

主从模式 主从同步 同步过程&#xff1a; 全量同步&#xff08;第一次连接&#xff09;&#xff1a;RDB文件加缓冲区&#xff0c;主节点fork子进程&#xff0c;保存RDB&#xff0c;发送RDB到从节点磁盘&#xff0c;从节点清空数据&#xff0c;从节点加载RDB到内存增量同步&am…

77-《欧耧斗菜》

欧耧斗菜 欧耧斗菜&#xff08;学名&#xff1a;Aquilegia vulgaris L. &#xff09;是毛茛科耧斗菜属植物&#xff0c;株高30-60厘米。基生叶有长柄&#xff0c;基生叶及茎下部叶为二回三出复叶&#xff0c;小叶2-3裂&#xff0c;裂片边缘具圆齿。最上部茎生叶近无柄。聚伞花序…

为AI聊天工具添加一个知识系统 之83 详细设计之24 度量空间之1 因果关系和过程:认知金字塔

本文要点 度量空间 在本项目&#xff08;为AI聊天工具添加一个知识系统 &#xff09;中 是出于对“用”的考量 来考虑的。这包括&#xff1a; 相对-位置 力用&#xff08;“相”&#xff09;。正如 法力&#xff0c;相关-速度 体用 &#xff08;“体”&#xff09;。例如 重…

Unity 2D实战小游戏开发跳跳鸟 - 跳跳鸟碰撞障碍物逻辑

在有了之前创建的可移动障碍物之后,就可以开始进行跳跳鸟碰撞到障碍物后死亡的逻辑,死亡后会产生一个对应的效果。 跳跳鸟碰撞逻辑 创建Obstacle Tag 首先跳跳鸟在碰撞到障碍物时,我们需要判定碰撞到的是障碍物,可以给障碍物的Prefab预制体添加一个Tag为Obstacle,添加步…

记录 | Docker的windows版安装

目录 前言一、1.1 打开“启用或关闭Windows功能”1.2 安装“WSL”方式1&#xff1a;命令行下载方式2&#xff1a;离线包下载 二、Docker Desktop更新时间 前言 参考文章&#xff1a;Windows Subsystem for Linux——解决WSL更新速度慢的方案 参考视频&#xff1a;一个视频解决D…