可视化相机pose colmap形式的相机内参外参

目录

内参外参转换

可视化相机pose colmap形式的相机内参外参


内参外参转换

def visualize_cameras(cameras, images):
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    for image_id, image_data in images.items():
        qvec = image_data['qvec']
        tvec = image_data['tvec']

        # Convert quaternion to rotation matrix
        rotation = R.from_quat(qvec).as_matrix()

        # Plot camera position
        ax.scatter(tvec[0], tvec[1], tvec[2], c='r', marker='o')

        # Plot camera orientation
        camera_direction = rotation @ np.array([0, 0, 1])
        ax.quiver(tvec[0], tvec[1], tvec[2], camera_direction[0], camera_direction[1], camera_direction[2], length=0.5, normalize=True)

    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    plt.show()

这段代码用于在3D坐标系中可视化相机的位置和朝向。以下是逐行解释:

  1. 提取参数

    qvec = image_data['qvec']  # 相机的旋转四元数 (w, x, y, z 或 x, y, z, w,需确认顺序)
    tvec = image_data['tvec']  # 相机的平移向量 (x, y, z 坐标)
  2. 四元数转旋转矩阵

    rotation = R.from_quat(qvec).as_matrix()  # 将四元数转换为3x3旋转矩阵
    • 假设 R 来自 scipy.spatial.transform.Rotation

    • 需确认 qvec 的顺序是否为库预期的格式(通常 R.from_quat 接受 (x, y, z, w))。

  3. 绘制相机位置

    ax.scatter(tvec[0], tvec[1], tvec[2], c='r', marker='o')  # 在3D图中用红点标记相机位置
  4. 计算并绘制相机朝向

    camera_direction = rotation @ np.array([0, 0, 1])  # 旋转矩阵乘以Z轴单位向量,得到相机在世界坐标系中的朝向
    ax.quiver(tvec[0], tvec[1], tvec[2], 
              camera_direction[0], camera_direction[1], camera_direction[2], 
              length=0.5, normalize=True)
    • 原理:相机坐标系中默认朝向为Z轴正方向(通常指向拍摄方向),通过旋转矩阵将其转换到世界坐标系。

    • 箭头参数

      • 起点为相机位置 (tvec[0], tvec[1], tvec[2])

      • 方向向量为 camera_direction

      • length=0.5 控制箭头显示长度(实际长度可能因归一化调整)。

      • normalize=True 确保箭头方向正确,长度统一。

注意事项

  • 四元数顺序:确认 qvec 是否与 R.from_quat 兼容(SciPy需 (x, y, z, w))。

  • 坐标系定义:假设相机朝向为Z轴正方向,若实际定义相反(如OpenGL使用-Z),需调整为 [0, 0, -1]

  • 3D绘图设置:确保 ax 是3D轴(例如通过 fig.add_subplot(111, projection='3d') 创建)。

效果:在3D图中,红色圆点表示相机位置,箭头指示其拍摄方向。

可视化相机pose colmap形式的相机内参外参

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.spatial.transform import Rotation as R
def read_cameras(file_path):
    cameras = {}
    with open(file_path, 'r') as file:
        for line in file:
            if line[0] == '#':
                continue
            parts = line.strip().split()
            camera_id = int(parts[0])
            model = parts[1]
            width = int(parts[2])
            height = int(parts[3])
            params = np.array([float(p) for p in parts[4:]])
            cameras[camera_id] = {
                'model': model,
                'width': width,
                'height': height,
                'params': params
            }
    return cameras

def read_images(file_path):
    images = {}
    with open(file_path, 'r') as file:
        for line in file:
            if line[0] == '#':
                continue
            parts = line.strip().split()
            if len(parts) == 15:
                continue
            image_id = int(parts[0])
            qvec = np.array([float(p) for p in parts[1:5]])
            tvec = np.array([float(p) for p in parts[5:8]])
            camera_id = int(parts[8])
            file_name = parts[9]
            images[image_id] = {
                'qvec': qvec,
                'tvec': tvec,
                'camera_id': camera_id,
                'file_name': file_name
            }
    return images

def visualize_cameras(cameras, images):
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    for image_id, image_data in images.items():
        qvec = image_data['qvec']
        tvec = image_data['tvec']

        # Convert quaternion to rotation matrix
        rotation = R.from_quat(qvec).as_matrix()

        # Plot camera position
        ax.scatter(tvec[0], tvec[1], tvec[2], c='r', marker='o')

        # Plot camera orientation
        camera_direction = rotation @ np.array([0, 0, 1])
        ax.quiver(tvec[0], tvec[1], tvec[2], camera_direction[0], camera_direction[1], camera_direction[2], length=0.5, normalize=True)

    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    plt.show()

# 示例使用
cameras = read_cameras('./cameras.txt')
images = read_images('./images.txt')
visualize_cameras(cameras, images)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/963093.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python sider-ai-api库 — 访问Claude、llama、ChatGPT、gemini、o1等大模型API

目前国内少有调用ChatGPT、Claude、Gemini等国外大模型API的库。 Python库sider_ai_api 提供了一个完整的解决方案。通过调用 sider.ai 的API,开发者可以实现对这些大模型的访问。 众所周知,sider是一个Chrome,以及Edge的浏览器插件&#xf…

FreeRTOS学习笔记2:FreeRTOS的基础知识

1.FreeRTOS介绍 FreeRTOS是一个免费的嵌入式实时操作系统,同时它在市面上也是一款主流的操作系统,是工作上必不可少的技能。它具有以下六种特点: 1.免费开源:在商业产品中使用,无潜在商业风险,无需担心。 2…

TensorFlow 简单的二分类神经网络的训练和应用流程

展示了一个简单的二分类神经网络的训练和应用流程。主要步骤包括: 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与部署 加载和应用已训练的模型 1. 数据准备与预处理 在本例中,数据准备是通过两个 Numpy 数…

【B站保姆级视频教程:Jetson配置YOLOv11环境(四)cuda cudnn tensorrt配置】

Jetson配置YOLOv11环境(4)cuda cudnn tensorrt配置 文章目录 0. 简介1. cuda配置:添加cuda环境变量2. cudnn配置3. TensorRT Python环境配置3.1 系统自带Python环境中的TensorRT配置3.2 Conda 虚拟Python环境中的TensorRT配置 0. 简介 官方镜…

Python安居客二手小区数据爬取(2025年)

目录 2025年安居客二手小区数据爬取观察目标网页观察详情页数据准备工作:安装装备就像打游戏代码详解:每行代码都是你的小兵完整代码大放送爬取结果 2025年安居客二手小区数据爬取 这段时间需要爬取安居客二手小区数据,看了一下相关教程基本…

Electron使用WebAassembly实现CRC-8 MAXIM校验

Electron使用WebAssembly实现CRC-8 MAXIM校验 将C/C语言代码,经由WebAssembly编译为库函数,可以在JS语言环境进行调用。这里介绍在Electron工具环境使用WebAssembly调用CRC-8 MAXIM格式校验的方式。 CRC-8 MAXIM校验函数WebAssebly源文件 C语言实现CR…

DeepSeek-R1:通过强化学习激励大型语言模型(LLMs)的推理能力

摘要 我们推出了第一代推理模型:DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero是一个未经监督微调(SFT)作为初步步骤,而是通过大规模强化学习(RL)训练的模型,展现出卓越的推理能力。通过强…

pytorch基于FastText实现词嵌入

FastText 是 Facebook AI Research 提出的 改进版 Word2Vec,可以: ✅ 利用 n-grams 处理未登录词 比 Word2Vec 更快、更准确 适用于中文等形态丰富的语言 完整的 PyTorch FastText 代码(基于中文语料),包含&#xff1…

【hot100】刷题记录(8)-矩阵置零

题目描述: 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1: 输入:matrix [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]]示例 2…

PyTorch框架——基于深度学习YOLOv8神经网络学生课堂行为检测识别系统

基于YOLOv8深度学习的学生课堂行为检测识别系统,其能识别三种学生课堂行为:names: [举手, 读书, 写字] 具体图片见如下: 第一步:YOLOv8介绍 YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本…

Doki Doki Mods Maker小指南

-*- 做都做了,那就做到底吧。 -*- 前言: 项目的话,在莫盘里,在贴吧原帖下我有发具体地址。 这里是Doki Doki Mods Maker,是用来做DDLC Mods的小工具。 说是“Mods”,实则不然,这个是我从零仿…

nodejs:express + js-mdict 网页查询英汉词典

向 DeepSeek R1 提问: 我想写一个Web 前端网页,后台用 nodejs js-mdict, 实现在线查询英语单词 1. 项目结构 首先,创建一个项目目录,结构如下: mydict-app/ ├── public/ │ ├── index.html │ ├── st…

LabVIEW纤维集合体微电流测试仪

LabVIEW开发纤维集合体微电流测试仪。该设备精确测量纤维材料在特定电压下的电流变化,以分析纤维的结构、老化及回潮率等属性,对于纤维材料的科学研究及质量控制具有重要意义。 ​ 项目背景 在纤维材料的研究与应用中,电学性能是评估其性能…

dfs枚举问题

碎碎念:要开始刷算法题备战蓝桥杯了,一切的开头一定是dfs 定义 枚举问题就是咱数学上学到的,从n个数里面选m个数,有三种题型(来自Acwing) 从 1∼n 这 n个整数中随机选取任意多个,输出所有可能的选择方案。 把 1∼n这…

SOME/IP--协议英文原文讲解3

前言 SOME/IP协议越来越多的用于汽车电子行业中,关于协议详细完全的中文资料却没有,所以我将结合工作经验并对照英文原版协议做一系列的文章。基本分三大块: 1. SOME/IP协议讲解 2. SOME/IP-SD协议讲解 3. python/C举例调试讲解 Note: Thi…

leetcode——二叉树的中序遍历(java)

给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 示例 1: 输入:root [1,null,2,3] 输出:[1,3,2] 示例 2: 输入:root [] 输出:[] 示例 3: 输入:root [1] 输出…

91,【7】 攻防世界 web fileclude

进入靶场 <?php // 包含 flag.php 文件 include("flag.php");// 以高亮语法显示当前文件&#xff08;即包含这段代码的 PHP 文件&#xff09;的内容 // 方便查看当前代码结构和逻辑&#xff0c;常用于调试或给解题者提示代码信息 highlight_file(__FILE__);// 检…

Microsoft Power BI:融合 AI 的文本分析

Microsoft Power BI 是微软推出的一款功能强大的商业智能工具&#xff0c;旨在帮助用户从各种数据源中提取、分析和可视化数据&#xff0c;以支持业务决策和洞察。以下是关于 Power BI 的深度介绍&#xff1a; 1. 核心功能与特点 Power BI 提供了全面的数据分析和可视化功能&…

海外问卷调查,最常用到的渠道查有什么特殊之处

市场调研&#xff0c;包含市场调查和市场研究两个步骤&#xff0c;是企业和机构根据经营方向而做出的决策问题&#xff0c;最终通过海外问卷调查中的渠道查&#xff0c;来系统地设计、收集、记录、整理、分析、研究市场反馈的工作流程。 市场调研的工作流程包括&#xff1a;确…

《苍穹外卖》项目学习记录-Day10来单提醒

type&#xff1a;用来标识消息的类型&#xff0c;比如说type1表示来单提醒&#xff0c;type2表示客户催单。 orderId&#xff1a;表示订单id&#xff0c;因为不管是来单提醒还是客户催单&#xff0c;这一次提醒都对应一个订单。是用户下了某个单或者催促某个订单&#xff0c;这…