AI常见的算法和例子

人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:

例子代码:纠结哥/pytorch_learn


1. 机器学习 (Machine Learning)

监督学习 (Supervised Learning)
  • 线性回归 (Linear Regression):用于预测连续值,如房价预测。
  • 逻辑回归 (Logistic Regression):用于分类问题,如垃圾邮件检测。
  • 支持向量机 (SVM):用于分类和回归,如文本分类。
  • k近邻 (k-Nearest Neighbors, k-NN):基于最近邻数据进行分类或回归。
  • 决策树 (Decision Tree):树形结构的分类与回归方法。
  • 随机森林 (Random Forest):基于多棵决策树的集成方法。
  • 梯度提升 (Gradient Boosting):如 XGBoost、LightGBM,用于高效的分类与回归。
无监督学习 (Unsupervised Learning)
  • k均值聚类 (k-Means Clustering):将数据分成多个簇。
  • 层次聚类 (Hierarchical Clustering):构建层次结构的簇。
  • 主成分分析 (PCA):用于数据降维和特征提取。
  • 独立成分分析 (ICA):用于信号分离或降维。
半监督学习 (Semi-supervised Learning)
  • 使用少量有标签数据和大量无标签数据,如自训练、自编码器(Autoencoder)。
强化学习 (Reinforcement Learning)
  • Q学习 (Q-Learning):基于价值函数的强化学习算法。
  • 深度Q网络 (DQN):结合深度学习的强化学习。
  • 策略梯度 (Policy Gradient):直接优化策略的强化学习方法。

2. 深度学习 (Deep Learning)

  • 前馈神经网络 (Feedforward Neural Networks, FNN):最基本的神经网络架构。
  • 卷积神经网络 (Convolutional Neural Networks, CNNs):主要用于图像处理,如目标检测、图像分类。
  • 循环神经网络 (Recurrent Neural Networks, RNNs):处理序列数据,如时间序列分析、文本生成。
    • 长短期记忆网络 (LSTM):RNN的改进,解决长期依赖问题。
    • 门控循环单元 (GRU):LSTM的轻量化版本。
  • 生成对抗网络 (Generative Adversarial Networks, GANs):生成高质量数据,如图像生成。
  • 变分自编码器 (Variational Autoencoder, VAE):用于生成和降维。
  • 图神经网络 (Graph Neural Networks, GNNs):处理图结构数据。

3. 自然语言处理 (Natural Language Processing, NLP)

  • 词嵌入 (Word Embeddings):如 Word2Vec、GloVe,用于表示词语的语义。
  • 循环神经网络 (RNN)LSTM/GRU:处理文本序列。
  • Transformer
    • BERT (Bidirectional Encoder Representations from Transformers):双向上下文理解模型。
    • GPT (Generative Pre-trained Transformer):生成式模型,用于文本生成。
  • 情感分析算法:基于分类的模型,用于提取情感极性。
  • 文本摘要算法:如 Seq2Seq 模型。

4. 计算机视觉 (Computer Vision)

  • 边缘检测算法:如 Canny、Sobel,用于图像预处理。
  • 目标检测算法:如 YOLO(You Only Look Once)、Faster R-CNN。
  • 图像分割算法:如 UNet、Mask R-CNN。
  • 人脸识别算法:如 OpenCV 的 Haar Cascades、深度学习的 FaceNet。
  • 图像生成与修复:如 GAN。

5. 优化算法

  • 梯度下降 (Gradient Descent):如 SGD、Momentum、Adam、RMSProp。
  • 遗传算法 (Genetic Algorithm):基于自然选择的优化方法。
  • 模拟退火算法 (Simulated Annealing):模仿物理退火过程。

6. 推荐系统算法

  • 协同过滤 (Collaborative Filtering):基于用户或物品的协作关系。
  • 矩阵分解 (Matrix Factorization):如 SVD,用于推荐。
  • 基于深度学习的推荐算法:如 DeepFM、Wide&Deep。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/962331.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入理解MySQL 的 索引

索引是一种用来快速检索数据的一种结构, 索引使用的好不好关系到对应的数据库性能方面, 这篇文章我们就来详细的介绍一下数据库的索引。 1. 页面的大小: B 树索引是一种 Key-Value 结构,通过 Key 可以快速查找到对应的 Value。B 树索引由根页面(Root&am…

vue之pinia组件的使用

1、搭建pinia环境 cnpm i pinia #安装pinia的组件 cnpm i nanoid #唯一id,相当于uuid cnpm install axios #网络请求组件 2、存储读取数据 存储数据 >> Count.ts文件import {defineStore} from piniaexport const useCountStore defineStore(count,{// a…

【MySQL — 数据库增删改查操作】深入解析MySQL的 Update 和 Delete 操作

1. 测试数据 mysql> select* from exam1; ----------------------------------------- | id | name | Chinese | Math | English | ----------------------------------------- | 1 | 唐三藏 | 67.0 | 98.0 | 56.0 | | 2 | 孙悟空 | 87.0 | 78.…

数据结构与算法之二叉树: LeetCode LCP 10. 二叉树任务调度 (Ts版)

二叉树任务调度 https://leetcode.cn/problems/er-cha-shu-ren-wu-diao-du/description/ 描述 任务调度优化是计算机性能优化的关键任务之一。在任务众多时,不同的调度策略可能会得到不同的总体执行时间,因此寻求一个最优的调度方案是非常有必要的 通…

JAVA 接口、抽象类的关系和用处 详细解析

接口 - Java教程 - 廖雪峰的官方网站 一个 抽象类 如果实现了一个接口,可以只选择实现接口中的 部分方法(所有的方法都要有,可以一部分已经写具体,另一部分继续保留抽象),原因在于: 抽象类本身…

游戏引擎 Unity - Unity 启动(下载 Unity Editor、生成 Unity Personal Edition 许可证)

Unity Unity 首次发布于 2005 年,属于 Unity Technologies Unity 使用的开发技术有:C# Unity 的适用平台:PC、主机、移动设备、VR / AR、Web 等 Unity 的适用领域:开发中等画质中小型项目 Unity 适合初学者或需要快速上手的开…

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之用户注册

🧸安清h:个人主页 🎥个人专栏:【计算机网络】【Mybatis篇】 🚦作者简介:一个有趣爱睡觉的intp,期待和更多人分享自己所学知识的真诚大学生。 目录 🎯项目基本介绍 🚦项…

视频多模态模型——视频版ViT

大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细解读多模态论文《ViViT: A Video Vision Transformer》,2021由google 提出用于视频处理的视觉 Transformer 模型,在视频多模态领域有…

DeepSeek本地部署(windows)

一、下载并安装Ollama 1.下载Ollama Ollama官网:Ollama 点击"Download",会跳转至下载页面。 点击"Download for Windows"。会跳转Github进行下载,如下载速度过慢,可在浏览器安装GitHub加速插件。 2.安装Ollama 双击下载的安装文件,点击"Inst…

1 HDFS

1 HDFS 1. HDFS概述2. HDFS架构3. HDFS的特性4. HDFS 的命令行使用5. hdfs的高级使用命令6. HDFS 的 block 块和副本机制6.1 抽象为block块的好处6.2 块缓存6.3 hdfs的文件权限验证6.4 hdfs的副本因子 7. HDFS 文件写入过程(非常重要)7.1 网络拓扑概念7.…

全国31省空间权重矩阵(地理相邻空间、公路铁路地理距离空间、经济空间)权重矩阵数据-社科数据

中国31个省份空间权重矩阵-社科数据https://download.csdn.net/download/paofuluolijiang/90028597 https://download.csdn.net/download/paofuluolijiang/90028597 空间权重矩阵是反映个体在空间中依赖关系的矩阵,本数据计算全国31个省三种标准化处理的空间权重矩…

Flask框架基础入门教程_ezflaskapp

pip install flaskFlask 快速入门小应用 学东西,得先知道我们用这个东西,能做出来一个什么东西。 一个最小的基于flask 的应用可能看上去像下面这个样子: from flask import Flask app Flask(__name__)app.route(/) def hello_world():ret…

机器学习笔记——特征工程

大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。 文章目录 特征工程(Fzeature Engineering)1. 特征提取&#xff…

Cursor火出圈,未来程序员还有出路吗?

大家好,我是凡人。 今天我表弟家邻居的阿姨,托他问问我目前程序员还有前景吗,希望我根据十几年的经验给出点建议,看看程序员这条路未来能不能走。 一下子不知道该怎么回复他了,如果是三年前问我,肯定毫不…

如何移植ftp服务器到arm板子?

很多厂家提供的sdk,一般都不自带ftp服务器功能, 需要要发人员自己移植ftp服务器程序。 本文手把手教大家如何移植ftp server到arm板子。 环境 sdk:复旦微 Buildroot 2018.02.31. 解压 $ mkdir ~/vsftpd $ cp vsftpd-3.0.2.tar.gz ~/vs…

第5章 公共事件

HarmonyOS通过公共事件服务为应用程序提供订阅、发布、退订公共事件的能力。 5.1 公共事件概述 在应用里面,往往会有事件。比如,朋友给我手机发了一条信息,未读信息会在手机的通知栏给出提示。 5.1.1 公共事件的分类 公共事件&#xff08…

STM32 对射式红外传感器配置

这次用的是STM32F103的开发板(这里面的exti.c文件没有how to use this driver 配置说明) 对射式红外传感器 由一个红外发光二极管和NPN光电三极管组成,M3固定安装孔,有输出状态指示灯,输出高电平灯灭,输出…

【数据结构】(2)时间、空间复杂度

一、衡量算法好坏的指标 时间复杂度衡量算法的运行速度,空间复杂度衡量算法所需的额外空间。这些指标,是某场景中选择使用哪种数据结构和算法的依据。如今,计算机的存储器已经变得容易获得,所以不再太关注空间复杂度。 二、渐进表…

FBX SDK的使用:基础知识

Windows环境配置 FBX SDK安装后,目录下有三个文件夹: include 头文件lib 编译的二进制库,根据你项目的配置去包含相应的库samples 官方使用案列 动态链接 libfbxsdk.dll, libfbxsdk.lib是动态库,需要在配置属性->C/C->预…

Ansible自动化运维实战--yaml的使用和配置(7/8)

文章目录 一、YAML 基本语法1.1. 缩进1.2. 注释1.3. 列表1.4. 字典 二、Ansible 中 YAML 的应用2.1. Ansible 剧本(Playbooks)2.2. 变量定义2.3. 角色(Roles)2.4. Inventory 文件2.5. 数据类型2.6. 引用变量 在 Ansible 里&#x…