《贪心算法:原理剖析与典型例题精解》

 必刷的贪心算法典型例题!

算法竞赛(蓝桥杯)贪心算法1——数塔问题-CSDN博客

算法竞赛(蓝桥杯)贪心算法2——需要安排几位师傅加工零件-CSDN博客

算法(蓝桥杯)贪心算法3——二维数组排序与贪心算法——活动选择-CSDN博客

算法(蓝桥杯)贪心算法4——拦截导弹的系统数量求解-CSDN博客

算法(蓝桥杯)贪心算法5——删数问题的解题思路-CSDN博客

算法(蓝桥杯)贪心算法6——均分纸牌问题的解题思路与代码实现-CSDN博客

算法(蓝桥杯)贪心算法7——过河的最短时间问题解析-CSDN博客


贪心算法:在选择中追求最优解

在算法的世界里,贪心算法是一种简单而强大的策略,它如同一位精明的决策者,在每一步都做出看似最优的选择,以期达到全局的最优解。本文将带你深入了解贪心算法的原理、特点、应用场景以及局限性,让你对这一算法有全面而清晰的认识。

一、贪心算法的定义与原理

贪心算法是一种在每一步选择中都采取当前状态下最优(即最有利)的选择,从而希望导致结果是全局最优的算法。它的核心思想是“贪心”,即在解决问题的过程中,总是做出局部最优的选择,希望通过一系列局部最优的选择来达到全局最优解。

举个简单的例子,假设你面前有一堆硬币,有1元、5角、1角等不同面值,现在需要凑出3元7角。贪心算法的思路就是先选择面值最大的硬币,也就是1元硬币,尽可能多地拿,直到不能再拿为止。然后选择次大的5角硬币,继续尽可能多地拿……按照这种贪心的策略,最终可以凑出所需的金额。在这个过程中,每一步都选择了当前能拿的最大的硬币,这就是局部最优的选择,而通过这种方式,最终也得到了全局最优的解,即用最少的硬币数凑出了3元7角。

二、贪心算法的特点

(一)简单直观

贪心算法的逻辑非常简单,它不需要复杂的数学推导和大量的数据结构支持,只需按照一定的规则在每一步做出选择即可。这种简单性使得贪心算法容易理解和实现,对于一些简单的问题,甚至可以直接凭借直觉写出贪心算法的解决方案。例如在解决“找零钱”问题时,按照硬币面值从大到小依次选择,这种思路几乎人人都能迅速理解并应用。

(二)高效性

由于贪心算法在每一步都只考虑当前的最优选择,而不需要回溯或者考虑其他可能的选择,因此它的执行效率通常很高。在很多情况下,贪心算法的时间复杂度相对较低,能够快速得到问题的解。比如在“活动安排问题”中,通过按照活动结束时间对活动进行排序,然后依次选择不冲突的活动,这个过程的时间复杂度主要取决于排序操作,通常为O(nlogn),在处理大量数据时,这种高效的算法能够显著节省时间和计算资源。

(三)局限性

然而,贪心算法并非万能的。它的局限性在于不能保证对所有问题都能得到全局最优解。因为贪心算法只是在每一步选择局部最优解,而这些局部最优解组合起来并不一定就是全局最优解。有些问题可能存在多种选择路径,而贪心算法可能会因为早期的错误选择而陷入局部最优的陷阱,从而无法得到真正的全局最优解。例如在“背包问题”中,如果单纯按照物品价值从高到低或者单位价值(价值/重量)从高到低的顺序选择物品放入背包,可能会导致背包无法充分利用,从而得不到最大价值的解。

三、贪心算法的应用场景

(一)活动安排问题

假设有一个教室,需要安排多个活动,每个活动都有开始时间和结束时间。如何安排这些活动,使得这个教室能够容纳尽可能多的活动呢?这就是一个典型的活动安排问题。使用贪心算法,可以按照活动结束时间对活动进行排序,然后依次选择结束时间最早的活动,并且保证选择的活动之间不冲突。通过这种方式,能够最大化教室的利用率,安排尽可能多的活动。

(二)最短路径问题

在图论中,求解从一个顶点到另一个顶点的最短路径是一个常见的问题。Dijkstra算法就是一种基于贪心思想的算法,用于解决单源最短路径问题。它从源点开始,按照距离源点的远近依次选择顶点,每次选择距离源点最近且未被访问过的顶点,然后更新该顶点到其他顶点的距离。通过这种贪心的选择策略,Dijkstra算法能够逐步构建出从源点到图中所有顶点的最短路径树,从而得到最短路径。

(三)霍夫曼编码

在数据压缩领域,霍夫曼编码是一种广泛应用的压缩算法。它通过构建霍夫曼树来实现对字符的高效编码。在构建霍夫曼树的过程中,贪心算法发挥了关键作用。每次选择频率最低的两个字符(或者节点)进行合并,然后更新字符的频率,重复这个过程,直到所有字符都被合并到一棵树中。通过这种方式构建的霍夫曼树能够保证字符的编码长度与其频率成反比,从而实现对数据的有效压缩。

四、贪心算法的实现步骤

实现贪心算法通常需要遵循以下步骤:

(一)建立数学模型

首先,需要对问题进行分析,建立一个数学模型来描述问题。明确问题的目标是什么,需要做出哪些选择,以及这些选择之间的关系。例如在“最小生成树问题”中,数学模型就是一个带权图,目标是找到一棵生成树,使得树的总权重最小。

(二)确定贪心策略

根据问题的特点和数学模型,确定一个贪心策略,即在每一步选择中,如何做出局部最优的选择。这个策略需要能够清晰地指导算法在每一步应该选择什么。例如在“最小生成树问题”中,可以采用Prim算法的贪心策略,每次选择权重最小的边,将一个新的顶点加入到生成树中;或者采用Kruskal算法的贪心策略,按照边的权重从小到大依次选择边,只要这条边不会与已经选择的边构成环,就将其加入到生成树中。

(三)逐步求解

按照确定的贪心策略,从初始状态开始,逐步进行选择,直到得到问题的解。在每一步选择中,都需要根据当前的状态和贪心策略来做出决策,并更新当前的状态。例如在“哈夫曼编码”中,从初始的字符集合开始,按照贪心策略逐步选择频率最低的字符进行合并,每次合并后更新字符集合,直到构建出完整的霍夫曼树。

(四)验证解的正确性

得到解之后,需要对解进行验证,确保它满足问题的要求。对于一些问题,可以通过与已知的最优解进行比较来验证;对于没有已知最优解的问题,可以通过逻辑推理或者测试不同的输入来验证解的正确性。例如在“活动安排问题”中,验证得到的活动安排是否满足活动之间不冲突的要求,以及是否确实安排了尽可能多的活动。

五、总结

贪心算法是一种简单、高效的算法策略,在很多问题中都能发挥重要作用。它通过在每一步选择局部最优解,希望能够得到全局最优解。虽然贪心算法不能保证对所有问题都能得到最优解,但在很多实际问题中,它能够快速得到一个相对较好的解。了解贪心算法的原理、特点和应用场景,可以帮助我们在面对问题时,快速判断是否可以使用贪心算法来解决,从而提高解决问题的效率。在实际应用中,我们需要结合问题的具体情况,灵活运用贪心算法,同时也要注意其局限性,避免陷入局部最优的陷阱。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/956106.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vue3 nginx 打包后遇到的问题

前端vite文件配置 export default defineConfig({plugins: [vue(),DefineOptions()],base:./,resolve:{alias:{:/src, //配置指向src目录components:/src/components,views:/src/views}},server:{// host:0.0.0.0,// port:7000,proxy:{/api:{target:xxx, // 目标服务器地址 &am…

linux下配置python环境及库配置

概述 使用Linux作为开发环境拥有完整的开源工具链且易于通过系统包管理器安装,与系统集成良好。对于开源项目开发,能方便地从源代码编译安装软件,使用构建工具,提供更原生的开发环境。 可高度定制系统,满足特殊开发需求…

【机器学习实战入门】使用OpenCV进行性别和年龄检测

Gender and Age Detection Python 项目 首先,向您介绍用于此高级 Python 项目的性别和年龄检测中的术语: 什么是计算机视觉? 计算机视觉是一门让计算机能够像人类一样观察和识别数字图像和视频的学科。它面临的挑战大多源于对生物视觉有限的了解。计算机视觉涉及获取、处…

左神算法基础提升--4

文章目录 树形dp问题Morris遍历 树形dp问题 求解这个问题需要用到我们在基础班上学到的从节点的左子树和右子树上拿信息的方法。 求最大距离主要分为两种情况:1.当前节点参与最大距离的求解;2.当前节点不参与最大距离的求解; 1.当前节点参与最…

spark任务优化参数整理

以下参数中有sql字眼的一般只有spark-sql模块生效,如果你看过spark的源码,你会发现sql模块是在core模块上硬生生干了一层,所以反过来spark-sql可以复用core模块的配置,例外的时候会另行说明,此外由于总结这些参数是在不…

华为数据中心CE系列交换机级联M-LAG配置示例

M-LAG组网简介 M-LAG(Multi-chassis Link Aggregation)技术是一种跨设备的链路聚合技术,它通过将两台交换机组成一个逻辑设备,实现链路的负载分担和故障切换,从而提高网络的可靠性和稳定性。下面给大家详细介绍如何在…

游戏引擎学习第80天

Blackboard:增强碰撞循环,循环遍历两种类型的 t 值 计划对现有的碰撞检测循环进行修改,以便实现一些新的功能。具体来说,是希望处理在游戏中定义可行走区域和地面的一些实体。尽管这是一个2D游戏,目标是构建一些更丰富…

EMS专题 | 守护数据安全:数据中心和服务器机房环境温湿度监测

您需要服务器机房温度监测解决方案吗? 服务器机房是企业中用于存储、管理和维护服务器及其相关组件的设施。服务器机房通常位于数据中心内,是一个专门设计的物理环境,旨在确保服务器的稳定运行和数据的安全性。服务器机房主要起到存储和管理数…

4 AXI USER IP

前言 使用AXI Interface封装IP,并使用AXI Interface实现对IP内部寄存器进行读写实现控制LED的demo,这个demo是非常必要的,因为在前面的笔记中基本都需哟PS端与PL端就行通信互相交互,在PL端可以通过中断的形式来告知PS端一些事情&…

网络编程 | UDP套接字通信及编程实现经验教程

1、UDP基础 传输层主要应用的协议模型有两种,一种是TCP协议,另外一种则是UDP协议。在上一篇博客文章中,已经对TCP协议及如何编程实现进行了详细的梳理讲解,在本文中,主要讲解与TCP一样广泛使用了另一种协议&#xff1a…

A5.Springboot-LLama3.2服务自动化构建(二)——Jenkins流水线构建配置初始化设置

下面我们接着上一篇文章《A4.Springboot-LLama3.2服务自动化构建(一)——构建docker镜像配置》继续往下分析,在自动化流水线构建过程当中的相关初始化设置和脚本编写。 一、首先需要先安装Jenkins 主部分请参考我前面写的一篇文章《Jenkins持续集成与交付安装配置》 二、…

开发神器之cursor

文章目录 cursor简介主要特点 下载cursor页面的简单介绍切换大模型指定ai学习的文件指定特定的代码喂给ai创建项目框架文件 cursor简介 Cursor 是一款专为开发者设计的智能代码编辑器,集成了先进的 AI 技术,旨在提升编程效率。以下是其主要特点和功能&a…

基于机器学习随机森林算法的个人职业预测研究

1.背景调研 随着信息技术的飞速发展,特别是大数据和云计算技术的广泛应用,各行各业都积累了大量的数据。这些数据中蕴含着丰富的信息和模式,为利用机器学习进行职业预测提供了可能。机器学习算法的不断进步,如深度学习、强化学习等…

【王树森搜索引擎技术】概要01:搜索引擎的基本概念

1. 基本名词 query:查询词SUG:搜索建议文档:搜索结果标签/筛选项 文档单列曝光 文档双列曝光 2. 曝光与点击 曝光:用户在搜索结果页上看到文档,就算曝光文档点击:在曝光后,用户点击文档&…

图论DFS:黑红树

我的个人主页 {\large \mathsf{{\color{Red} 我的个人主页} } } 我的个人主页 往 {\color{Red} {\Huge 往} } 往 期 {\color{Green} {\Huge 期} } 期 文 {\color{Blue} {\Huge 文} } 文 章 {\color{Orange} {\Huge 章}} 章 DFS 算法:记忆化搜索DFS 算法&#xf…

ros2-7.5 做一个自动巡检机器人

7.5.1 需求及设计 又到了小鱼老师带着做最佳实践项目了。需求:做一个在各个房间不断巡逻并记录图像的机器人。 到达目标点后首先通过语音播放到达目标点信息, 再通过摄像头拍摄一张图片保存到本地。 7.5.2 编写巡检控制节点 在chapt7_ws/src下新建功…

告别繁琐编译!make和makefile的便捷之道

Linux系列 文章目录 Linux系列前言一、make/makefile是什么?二、make/makefile的使用2.1、语法规则2.2、依赖关系和依赖方法2.3、清理可执行文件2.4、执行依据 三、循环依赖问题总结 前言 上一篇博客给大家分享了在Linux下编译源代码的两个工具,gcc和g…

【鸿蒙】0x02-LiteOS-M基于Qemu RISC-V运行

OpenHarmony LiteOS-M基于Qemu RISC-V运行 系列文章目录更新日志OpenHarmony技术架构OH技术架构OH支持系统类型轻量系统(mini system)小型系统(small system)标准系统(standard system) 简介环境准备安装QE…

C语言初阶习题【29】杨氏矩阵

1. 题目描述——杨氏矩阵 有一个数字矩阵&#xff0c;矩阵的每行从左到右是递增的&#xff0c;矩阵从上到下是递增的&#xff0c;请编写程序在这样的矩阵中查找某个数字是否存在。 要求&#xff1a;时间复杂度小于O(N); 2. 思路 3. 代码实现1 #include<stdio.h>void fin…

Cloud Foundry,K8S,Mesos Marathon弹性扩缩容特性对比

一、Cloud Foundry 使用Scaling an Application Using App Autoscaler插件&#xff0c;基于资源使用情况触发简单扩缩容 CPU、内存、Http带宽、延时等 监控这些资源的使用情况决定扩缩容策略&#xff1a;实例是增加还是减少 Instance Limits 限制实例数量范围&#xff0c;定义…