《Keras 3 在 TPU 上的肺炎分类》

Keras 3 在 TPU 上的肺炎分类

作者:Amy MiHyun Jang
创建日期:2020/07/28
最后修改时间:2024/02/12
描述:TPU 上的医学图像分类。

(i) 此示例使用 Keras 3

 在 Colab 中查看 

 GitHub 源


简介 + 设置

本教程将介绍如何构建 X 射线图像分类模型 预测 X 线扫描是否显示肺炎的存在。

import re
import os
import random
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt

try:
    tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
    print("Device:", tpu.master())
    strategy = tf.distribute.TPUStrategy(tpu)
except:
    strategy = tf.distribute.get_strategy()
print("Number of replicas:", strategy.num_replicas_in_sync)
Device: grpc://10.0.27.122:8470 INFO:tensorflow:Initializing the TPU system: grpc://10.0.27.122:8470 INFO:tensorflow:Initializing the TPU system: grpc://10.0.27.122:8470 INFO:tensorflow:Clearing out eager caches INFO:tensorflow:Clearing out eager caches INFO:tensorflow:Finished initializing TPU system. INFO:tensorflow:Finished initializing TPU system. WARNING:absl:[`tf.distribute.TPUStrategy`](https://www.tensorflow.org/api_docs/python/tf/distribute/TPUStrategy) is deprecated, please use the non experimental symbol [`tf.distribute.TPUStrategy`](https://www.tensorflow.org/api_docs/python/tf/distribute/TPUStrategy) instead. INFO:tensorflow:Found TPU system: INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0) Number of replicas: 8 

我们需要一个指向我们数据的 Google Cloud 链接,以便使用 TPU 加载数据。 下面,我们定义了我们将在此示例中使用的关键配置参数。 要在 TPU 上运行,此示例必须在 Colab 上,并选择 TPU 运行时。

AUTOTUNE = tf.data.AUTOTUNE
BATCH_SIZE = 25 * strategy.num_replicas_in_sync
IMAGE_SIZE = [180, 180]
CLASS_NAMES = ["NORMAL", "PNEUMONIA"]

加载数据

我们使用的 Cell 的胸部 X 光数据将数据分为 training 和 test 文件。让我们首先加载训练 TFRecords。

train_images = tf.data.TFRecordDataset(
    "gs://download.tensorflow.org/data/ChestXRay2017/train/images.tfrec"
)
train_paths = tf.data.TFRecordDataset(
    "gs://download.tensorflow.org/data/ChestXRay2017/train/paths.tfrec"
)

ds = tf.data.Dataset.zip((train_images, train_paths))

让我们数一数我们有多少次健康/正常的胸部 X 光片,以及有多少 肺炎胸部 X 光片我们有:

COUNT_NORMAL = len(
    [
        filename
        for filename in train_paths
        if "NORMAL" in filename.numpy().decode("utf-8")
    ]
)
print("Normal images count in training set: " + str(COUNT_NORMAL))

COUNT_PNEUMONIA = len(
    [
        filename
        for filename in train_paths
        if "PNEUMONIA" in filename.numpy().decode("utf-8")
    ]
)
print("Pneumonia images count in training set: " + str(COUNT_PNEUMONIA))
Normal images count in training set: 1349 Pneumonia images count in training set: 3883 

请注意,被归类为肺炎的图像比正常情况多得多。这 显示我们的数据不平衡。我们稍后会纠正这种不平衡 在我们的笔记本中。

我们想将每个文件名映射到相应的 (image, label) 对。以下内容 方法将帮助我们做到这一点。

由于我们只有两个标签,因此我们将对标签进行编码,以便 或 肺炎和/或表示正常。1True0False

def get_label(file_path):
    # convert the path to a list of path components
    parts = tf.strings.split(file_path, "/")
    # The second to last is the class-directory
    if parts[-2] == "PNEUMONIA":
        return 1
    else:
        return 0


def decode_img(img):
    # convert the compressed string to a 3D uint8 tensor
    img = tf.image.decode_jpeg(img, channels=3)
    # resize the image to the desired size.
    return tf.image.resize(img, IMAGE_SIZE)


def process_path(image, path):
    label = get_label(path)
    # load the raw data from the file as a string
    img = decode_img(image)
    return img, label


ds = ds.map(process_path, num_parallel_calls=AUTOTUNE)

让我们将数据拆分为训练和验证数据集。

ds = ds.shuffle(10000)
train_ds = ds.take(4200)
val_ds = ds.skip(4200)

让我们可视化 (image, label) 对的形状。

for image, label in train_ds.take(1):
    print("Image shape: ", image.numpy().shape)
    print("Label: ", label.numpy())
Image shape: (180, 180, 3) Label: False 

同时加载测试数据并设置其格式。

test_images = tf.data.TFRecordDataset(
    "gs://download.tensorflow.org/data/ChestXRay2017/test/images.tfrec"
)
test_paths = tf.data.TFRecordDataset(
    "gs://download.tensorflow.org/data/ChestXRay2017/test/paths.tfrec"
)
test_ds = tf.data.Dataset.zip((test_images, test_paths))

test_ds = test_ds.map(process_path, num_parallel_calls=AUTOTUNE)
test_ds = test_ds.batch(BATCH_SIZE)

可视化数据集

首先,让我们使用缓冲预取,这样我们就可以在没有 I/O 的情况下从磁盘生成数据 变为阻塞。

请注意,大型图像数据集不应缓存在内存中。我们在这里做 因为数据集不是很大,我们想在 TPU 上训练。

def prepare_for_training(ds, cache=True):
    # This is a small dataset, only load it once, and keep it in memory.
    # use `.cache(filename)` to cache preprocessing work for datasets that don't
    # fit in memory.
    if cache:
        if isinstance(cache, str):
            ds = ds.cache(cache)
        else:
            ds = ds.cache()

    ds = ds.batch(BATCH_SIZE)

    # `prefetch` lets the dataset fetch batches in the background while the model
    # is training.
    ds = ds.prefetch(buffer_size=AUTOTUNE)

    return ds

调用训练数据的下一个批次迭代。

train_ds = prepare_for_training(train_ds)
val_ds = prepare_for_training(val_ds)

image_batch, label_batch = next(iter(train_ds))

定义在批处理中显示图像的方法。

def show_batch(image_batch, label_batch):
    plt.figure(figsize=(10, 10))
    for n in range(25):
        ax = plt.subplot(5, 5, n + 1)
        plt.imshow(image_batch[n] / 255)
        if label_batch[n]:
            plt.title("PNEUMONIA")
        else:
            plt.title("NORMAL")
        plt.axis("off")

由于该方法将 NumPy 数组作为其参数,因此请在 batches 以 NumPy 数组形式返回张量。

show_batch(image_batch.numpy(), label_batch.numpy())

PNG 格式


构建 CNN

为了使我们的模型更加模块化和更容易理解,让我们定义一些块。如 我们正在构建一个卷积神经网络,我们将创建一个卷积块和一个密集的 layer 块。

此 CNN 的体系结构受到本文的启发。

import os 
os.environ['KERAS_BACKEND'] = 'tensorflow'

import keras
from keras import layers

def conv_block(filters, inputs):
    x = layers.SeparableConv2D(filters, 3, activation="relu", padding="same")(inputs)
    x = layers.SeparableConv2D(filters, 3, activation="relu", padding="same")(x)
    x = layers.BatchNormalization()(x)
    outputs = layers.MaxPool2D()(x)

    return outputs


def dense_block(units, dropout_rate, inputs):
    x = layers.Dense(units, activation="relu")(inputs)
    x = layers.BatchNormalization()(x)
    outputs = layers.Dropout(dropout_rate)(x)

    return outputs

以下方法将定义函数来为我们构建模型。

图像最初的值范围为 [0, 255]。CNN 与较小的 CNN 配合得更好 numbers 来调整它,以便根据我们的输入进行缩小。

Dropout 图层很重要,因为它们 降低模型过拟合的可能性。我们希望用一个具有一个节点的层来结束模型,因为这将是确定 X 射线是否显示的二进制输出 存在肺炎。Dense

def build_model():
    inputs = keras.Input(shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3))
    x = layers.Rescaling(1.0 / 255)(inputs)
    x = layers.Conv2D(16, 3, activation="relu", padding="same")(x)
    x = layers.Conv2D(16, 3, activation="relu", padding="same")(x)
    x = layers.MaxPool2D()(x)

    x = conv_block(32, x)
    x = conv_block(64, x)

    x = conv_block(128, x)
    x = layers.Dropout(0.2)(x)

    x = conv_block(256, x)
    x = layers.Dropout(0.2)(x)

    x = layers.Flatten()(x)
    x = dense_block(512, 0.7, x)
    x = dense_block(128, 0.5, x)
    x = dense_block(64, 0.3, x)

    outputs = layers.Dense(1, activation="sigmoid")(x)

    model = keras.Model(inputs=inputs, outputs=outputs)
    return model

更正数据不平衡

在这个例子的前面部分,我们看到数据不平衡,分类的图像更多 作为肺炎比正常。我们将通过使用类加权来纠正这个问题:

initial_bias = np.log([COUNT_PNEUMONIA / COUNT_NORMAL])
print("Initial bias: {:.5f}".format(initial_bias[0]))

TRAIN_IMG_COUNT = COUNT_NORMAL + COUNT_PNEUMONIA
weight_for_0 = (1 / COUNT_NORMAL) * (TRAIN_IMG_COUNT) / 2.0
weight_for_1 = (1 / COUNT_PNEUMONIA) * (TRAIN_IMG_COUNT) / 2.0

class_weight = {0: weight_for_0, 1: weight_for_1}

print("Weight for class 0: {:.2f}".format(weight_for_0))
print("Weight for class 1: {:.2f}".format(weight_for_1))
Initial bias: 1.05724 Weight for class 0: 1.94 Weight for class 1: 0.67 

类别 (Normal) 的权重比类别 (Pneumonia) 的权重高得多。由于法线图像较少,因此将对每个法线图像进行加权 more 来平衡数据,因为 CNN 在训练数据平衡时效果最佳。01


训练模型

定义回调

checkpoint 回调保存了模型的最佳权重,因此下次我们想使用 模型,我们不必花时间训练它。提前停止回调停止 当模型开始停滞时,甚至更糟糕的是,当 模型开始过拟合。

checkpoint_cb = keras.callbacks.ModelCheckpoint("xray_model.keras", save_best_only=True)

early_stopping_cb = keras.callbacks.EarlyStopping(
    patience=10, restore_best_weights=True
)

我们还希望调整我们的学习率。学习率过高会导致模型 发散。学习速率太小会导致模型太慢。我们 实现下面的指数学习率调度方法。

initial_learning_rate = 0.015
lr_schedule = keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate, decay_steps=100000, decay_rate=0.96, staircase=True
)

拟合模型

对于我们的指标,我们希望包括 precision 和 recall,因为它们将为 更了解我们的模型有多好。准确率告诉我们 labels 是正确的。由于我们的数据不平衡,准确性可能会给人一种歪曲的感觉 一个好的模型(即始终预测 PNEUMONIA 的模型将准确率为 74%,但并非如此 一个很好的模型)。

精度是 TP 和假阳性之和的真阳性 (TP) 数 (FP) 的 Shell。它显示标记的阳性实际正确的比例。

召回率是 TP 和假负数 (FN) 之和的 TP 数。它显示了什么 实际阳性的比例是正确的。

由于图像只有两个可能的标签,因此我们将使用 二进制交叉熵损失。当我们拟合模型时,请记住指定类权重 我们之前定义过。因为我们使用的是 TPU,所以训练会很快 - 小于 2 分钟。

with strategy.scope():
    model = build_model()

    METRICS = [
        keras.metrics.BinaryAccuracy(),
        keras.metrics.Precision(name="precision"),
        keras.metrics.Recall(name="recall"),
    ]
    model.compile(
        optimizer=keras.optimizers.Adam(learning_rate=lr_schedule),
        loss="binary_crossentropy",
        metrics=METRICS,
    )

history = model.fit(
    train_ds,
    epochs=100,
    validation_data=val_ds,
    class_weight=class_weight,
    callbacks=[checkpoint_cb, early_stopping_cb],
)
Epoch 1/100 WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/multi_device_iterator_ops.py:601: get_next_as_optional (from tensorflow.python.data.ops.iterator_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Iterator.get_next_as_optional()` instead. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/multi_device_iterator_ops.py:601: get_next_as_optional (from tensorflow.python.data.ops.iterator_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Iterator.get_next_as_optional()` instead. 21/21 [==============================] - 12s 568ms/step - loss: 0.5857 - binary_accuracy: 0.6960 - precision: 0.8887 - recall: 0.6733 - val_loss: 34.0149 - val_binary_accuracy: 0.7180 - val_precision: 0.7180 - val_recall: 1.0000 Epoch 2/100 21/21 [==============================] - 3s 128ms/step - loss: 0.2916 - binary_accuracy: 0.8755 - precision: 0.9540 - recall: 0.8738 - val_loss: 97.5194 - val_binary_accuracy: 0.7180 - val_precision: 0.7180 - val_recall: 1.0000 Epoch 3/100 21/21 [==============================] - 4s 167ms/step - loss: 0.2384 - binary_accuracy: 0.9002 - precision: 0.9663 - recall: 0.8964 - val_loss: 27.7902 - val_binary_accuracy: 0.7180 - val_precision: 0.7180 - val_recall: 1.0000 Epoch 4/100 21/21 [==============================] - 4s 173ms/step - loss: 0.2046 - binary_accuracy: 0.9145 - precision: 0.9725 - recall: 0.9102 - val_loss: 10.8302 - val_binary_accuracy: 0.7180 - val_precision: 0.7180 - val_recall: 1.0000 Epoch 5/100 21/21 [==============================] - 4s 174ms/step - loss: 0.1841 - binary_accuracy: 0.9279 - precision: 0.9733 - recall: 0.9279 - val_loss: 3.5860 - val_binary_accuracy: 0.7103 - val_precision: 0.7162 - val_recall: 0.9879 Epoch 6/100 21/21 [==============================] - 4s 185ms/step - loss: 0.1600 - binary_accuracy: 0.9362 - precision: 0.9791 - recall: 0.9337 - val_loss: 0.3014 - val_binary_accuracy: 0.8895 - val_precision: 0.8973 - val_recall: 0.9555 Epoch 7/100 21/21 [==============================] - 3s 130ms/step - loss: 0.1567 - binary_accuracy: 0.9393 - precision: 0.9798 - recall: 0.9372 - val_loss: 0.6763 - val_binary_accuracy: 0.7810 - val_precision: 0.7760 - val_recall: 0.9771 Epoch 8/100 21/21 [==============================] - 3s 131ms/step - loss: 0.1532 - binary_accuracy: 0.9421 - precision: 0.9825 - recall: 0.9385 - val_loss: 0.3169 - val_binary_accuracy: 0.8895 - val_precision: 0.8684 - val_recall: 0.9973 Epoch 9/100 21/21 [==============================] - 4s 184ms/step - loss: 0.1457 - binary_accuracy: 0.9431 - precision: 0.9822 - recall: 0.9401 - val_loss: 0.2064 - val_binary_accuracy: 0.9273 - val_precision: 0.9840 - val_recall: 0.9136 Epoch 10/100 21/21 [==============================] - 3s 132ms/step - loss: 0.1201 - binary_accuracy: 0.9521 - precision: 0.9869 - recall: 0.9479 - val_loss: 0.4364 - val_binary_accuracy: 0.8605 - val_precision: 0.8443 - val_recall: 0.9879 Epoch 11/100 21/21 [==============================] - 3s 127ms/step - loss: 0.1200 - binary_accuracy: 0.9510 - precision: 0.9863 - recall: 0.9469 - val_loss: 0.5197 - val_binary_accuracy: 0.8508 - val_precision: 1.0000 - val_recall: 0.7922 Epoch 12/100 21/21 [==============================] - 4s 186ms/step - loss: 0.1077 - binary_accuracy: 0.9581 - precision: 0.9870 - recall: 0.9559 - val_loss: 0.1349 - val_binary_accuracy: 0.9486 - val_precision: 0.9587 - val_recall: 0.9703 Epoch 13/100 21/21 [==============================] - 4s 173ms/step - loss: 0.0918 - binary_accuracy: 0.9650 - precision: 0.9914 - recall: 0.9611 - val_loss: 0.0926 - val_binary_accuracy: 0.9700 - val_precision: 0.9837 - val_recall: 0.9744 Epoch 14/100 21/21 [==============================] - 3s 130ms/step - loss: 0.0996 - binary_accuracy: 0.9612 - precision: 0.9913 - recall: 0.9559 - val_loss: 0.1811 - val_binary_accuracy: 0.9419 - val_precision: 0.9956 - val_recall: 0.9231 Epoch 15/100 21/21 [==============================] - 3s 129ms/step - loss: 0.0898 - binary_accuracy: 0.9643 - precision: 0.9901 - recall: 0.9614 - val_loss: 0.1525 - val_binary_accuracy: 0.9486 - val_precision: 0.9986 - val_recall: 0.9298 Epoch 16/100 21/21 [==============================] - 3s 128ms/step - loss: 0.0941 - binary_accuracy: 0.9621 - precision: 0.9904 - recall: 0.9582 - val_loss: 0.5101 - val_binary_accuracy: 0.8527 - val_precision: 1.0000 - val_recall: 0.7949 Epoch 17/100 21/21 [==============================] - 3s 125ms/step - loss: 0.0798 - binary_accuracy: 0.9636 - precision: 0.9897 - recall: 0.9607 - val_loss: 0.1239 - val_binary_accuracy: 0.9622 - val_precision: 0.9875 - val_recall: 0.9595 Epoch 18/100 21/21 [==============================] - 3s 126ms/step - loss: 0.0821 - binary_accuracy: 0.9657 - precision: 0.9911 - recall: 0.9623 - val_loss: 0.1597 - val_binary_accuracy: 0.9322 - val_precision: 0.9956 - val_recall: 0.9096 Epoch 19/100 21/21 [==============================] - 3s 143ms/step - loss: 0.0800 - binary_accuracy: 0.9657 - precision: 0.9917 - recall: 0.9617 - val_loss: 0.2538 - val_binary_accuracy: 0.9109 - val_precision: 1.0000 - val_recall: 0.8758 Epoch 20/100 21/21 [==============================] - 3s 127ms/step - loss: 0.0605 - binary_accuracy: 0.9738 - precision: 0.9950 - recall: 0.9694 - val_loss: 0.6594 - val_binary_accuracy: 0.8566 - val_precision: 1.0000 - val_recall: 0.8003 Epoch 21/100 21/21 [==============================] - 4s 167ms/step - loss: 0.0726 - binary_accuracy: 0.9733 - precision: 0.9937 - recall: 0.9701 - val_loss: 0.0593 - val_binary_accuracy: 0.9816 - val_precision: 0.9945 - val_recall: 0.9798 Epoch 22/100 21/21 [==============================] - 3s 126ms/step - loss: 0.0577 - binary_accuracy: 0.9783 - precision: 0.9951 - recall: 0.9755 - val_loss: 0.1087 - val_binary_accuracy: 0.9729 - val_precision: 0.9931 - val_recall: 0.9690 Epoch 23/100 21/21 [==============================] - 3s 125ms/step - loss: 0.0652 - binary_accuracy: 0.9729 - precision: 0.9924 - recall: 0.9707 - val_loss: 1.8465 - val_binary_accuracy: 0.7180 - val_precision: 0.7180 - val_recall: 1.0000 Epoch 24/100 21/21 [==============================] - 3s 124ms/step - loss: 0.0538 - binary_accuracy: 0.9783 - precision: 0.9951 - recall: 0.9755 - val_loss: 1.5769 - val_binary_accuracy: 0.7180 - val_precision: 0.7180 - val_recall: 1.0000 Epoch 25/100 21/21 [==============================] - 4s 167ms/step - loss: 0.0549 - binary_accuracy: 0.9776 - precision: 0.9954 - recall: 0.9743 - val_loss: 0.0590 - val_binary_accuracy: 0.9777 - val_precision: 0.9904 - val_recall: 0.9784 Epoch 26/100 21/21 [==============================] - 3s 131ms/step - loss: 0.0677 - binary_accuracy: 0.9719 - precision: 0.9924 - recall: 0.9694 - val_loss: 2.6008 - val_binary_accuracy: 0.6928 - val_precision: 0.9977 - val_recall: 0.5735 Epoch 27/100 21/21 [==============================] - 3s 127ms/step - loss: 0.0469 - binary_accuracy: 0.9833 - precision: 0.9971 - recall: 0.9804 - val_loss: 1.0184 - val_binary_accuracy: 0.8605 - val_precision: 0.9983 - val_recall: 0.8070 Epoch 28/100 21/21 [==============================] - 3s 126ms/step - loss: 0.0501 - binary_accuracy: 0.9790 - precision: 0.9961 - recall: 0.9755 - val_loss: 0.3737 - val_binary_accuracy: 0.9089 - val_precision: 0.9954 - val_recall: 0.8772 Epoch 29/100 21/21 [==============================] - 3s 128ms/step - loss: 0.0548 - binary_accuracy: 0.9798 - precision: 0.9941 - recall: 0.9784 - val_loss: 1.2928 - val_binary_accuracy: 0.7907 - val_precision: 1.0000 - val_recall: 0.7085 Epoch 30/100 21/21 [==============================] - 3s 129ms/step - loss: 0.0370 - binary_accuracy: 0.9860 - precision: 0.9980 - recall: 0.9829 - val_loss: 0.1370 - val_binary_accuracy: 0.9612 - val_precision: 0.9972 - val_recall: 0.9487 Epoch 31/100 21/21 [==============================] - 3s 125ms/step - loss: 0.0585 - binary_accuracy: 0.9819 - precision: 0.9951 - recall: 0.9804 - val_loss: 1.1955 - val_binary_accuracy: 0.6870 - val_precision: 0.9976 - val_recall: 0.5655 Epoch 32/100 21/21 [==============================] - 3s 140ms/step - loss: 0.0813 - binary_accuracy: 0.9695 - precision: 0.9934 - recall: 0.9652 - val_loss: 1.0394 - val_binary_accuracy: 0.8576 - val_precision: 0.9853 - val_recall: 0.8138 Epoch 33/100 21/21 [==============================] - 3s 128ms/step - loss: 0.1111 - binary_accuracy: 0.9555 - precision: 0.9870 - recall: 0.9524 - val_loss: 4.9438 - val_binary_accuracy: 0.5911 - val_precision: 1.0000 - val_recall: 0.4305 Epoch 34/100 21/21 [==============================] - 3s 130ms/step - loss: 0.0680 - binary_accuracy: 0.9726 - precision: 0.9921 - recall: 0.9707 - val_loss: 2.8822 - val_binary_accuracy: 0.7267 - val_precision: 0.9978 - val_recall: 0.6208 Epoch 35/100 21/21 [==============================] - 4s 187ms/step - loss: 0.0784 - binary_accuracy: 0.9712 - precision: 0.9892 - recall: 0.9717 - val_loss: 0.3940 - val_binary_accuracy: 0.9390 - val_precision: 0.9942 - val_recall: 0.9204 

可视化模型性能

让我们绘制训练集和验证集的模型准确率和损失。请注意, 没有为此笔记本指定随机种子。对于您的笔记本,可能会有轻微的 方差。

fig, ax = plt.subplots(1, 4, figsize=(20, 3))
ax = ax.ravel()

for i, met in enumerate(["precision", "recall", "binary_accuracy", "loss"]):
    ax[i].plot(history.history[met])
    ax[i].plot(history.history["val_" + met])
    ax[i].set_title("Model {}".format(met))
    ax[i].set_xlabel("epochs")
    ax[i].set_ylabel(met)
    ax[i].legend(["train", "val"])

PNG 格式

我们看到模型的准确率约为 95%。


预测和评估结果

让我们根据测试数据评估模型!

model.evaluate(test_ds, return_dict=True)
4/4 [==============================] - 3s 708ms/step - loss: 0.9718 - binary_accuracy: 0.7901 - precision: 0.7524 - recall: 0.9897 {'binary_accuracy': 0.7900640964508057, 'loss': 0.9717951416969299, 'precision': 0.752436637878418, 'recall': 0.9897436499595642} 

我们看到,测试数据的准确性低于验证的准确性 设置。这可能表示过拟合。

我们的召回率大于我们的精确率,这表明几乎所有的肺炎图像都是 识别正确,但一些正常图像被错误识别。我们应该致力于 提高我们的精度。

for image, label in test_ds.take(1):
    plt.imshow(image[0] / 255.0)
    plt.title(CLASS_NAMES[label[0].numpy()])

prediction = model.predict(test_ds.take(1))[0]
scores = [1 - prediction, prediction]

for score, name in zip(scores, CLASS_NAMES):
    print("This image is %.2f percent %s" % ((100 * score), name))
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: DeprecationWarning: In future, it will be an error for 'np.bool_' scalars to be interpreted as an index This is separate from the ipykernel package so we can avoid doing imports until This image is 47.19 percent NORMAL This image is 52.81 percent PNEUMONIA 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/955532.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CSS认识与实践

目录 CSS 是什么 基本语法规范 引入方式 内部样式表 行内样式表 外部样式 空格规范 选择器 选择器的功能 选择器的种类 基础选择器 标签选择器 类选择器 id 选择器 通配符选择器 基础选择器小结 复合选择器 后代选择器 子选择器 并集选择器 伪类选择器 复合…

Windows环境:使用命令行脚本批量发送http请求

因为服务器Windows版本问题,无法使用curl,所以只能使用wget。 C:\Windows\System32\wget.exe 需求背景: 传入客户端参数,请求服务端。 将请求参数保存到文本文件中,命令行读取文本文件,然后分割字符串&am…

Logback日志技术

Logback日志技术 日志 日志(Logging)是软件开发和运维中用于记录系统或应用程序运行期间发生的运行信息、状态变化、错误信息等的一种机制,这种记录的方式就好像我们日常生活中写日记一样。它提供了一种持久化的方式,使得开发者…

6. 快速掌握抽象类及接口

目录 1. 抽象类1.1 抽象类语法1.2 抽象类特性1.3 抽象类的作用 2. 接口2.1 接口语法2.2 接口的特性 3. 接口案例4. 常用接口4.1 Comparable接口---compareTo()方法4.2 clonable接口---clone方法4.2 深拷贝和浅拷贝 5. Object类5.1 equals()方法5.2 toString()方法5.3 hashCode(…

womb子宫一词解趣

英语单词 womb,是“子宫”的意思,这个单词非常有趣,下面我们来说说它有趣在什么地方。 首先,womb 这个单词,大体可以分成两个部分,即wom-和b-,其中wom-可对应子宫的子,b-可对应子宫…

Spring Cloud概述

(一)定义 Spring Cloud是一个基于Spring Boot实现的云应用开发工具,它为基于JVM的云应用开发中涉及的配置管理、服务发现、断路器、智能路由、微代理、控制总线、全局锁、决策竞选、分布式会话和集群状态管理等操作提供了一套完整的解决方案…

年后找工作需要注意的事项

大家好!我是 [数擎 AI],一位热爱探索新技术的前端开发者,在这里分享前端和 Web3D、AI 技术的干货与实战经验。如果你对技术有热情,欢迎关注我的文章,我们一起成长、进步! 开发领域:前端开发 | A…

windows远程桌面连接限定ip

1,Windows防火墙->高级设置->远程桌面 - 用户模式(TCP-In)->作用域->远程IP地址 2,启用规则

电脑换固态硬盘

参考: https://baijiahao.baidu.com/s?id1724377623311611247 一、根据尺寸和缺口可以分为以下几种: 1、M.2 NVME协议的固态 大部分笔记本是22x42MM和22x80MM nvme固态。 在京东直接搜: M.2 2242 M.2 2280 2、msata接口固态 3、NGFF M.…

3.无重复字符的最长字串--力扣

给定一个字符串 s ,请你找出其中不含有重复字符的 最长 子串 的长度。 示例 1: 输入: s “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子串是 “abc”,所以其长度为 3。 示例 2: 输入: s “bbbbb” 输出: 1 解释: 因为无重复字符的最长子串是 “…

西门子【Library of Basic Controls (LBC)基本控制库”(LBC) 提供基本控制功能】

AF架构中使用的库 文章目录 Table of contents Legal information ..............................................................................................................................2 1 Introduction ................................................…

Golang Gin系列-2:搭建Gin 框架环境

开始网络开发之旅通常是从选择合适的工具开始的。在这个全面的指南中,我们将引导你完成安装Go编程语言和Gin框架的过程,Gin框架是Go的轻量级和灵活的web框架。从设置Go工作空间到将Gin整合到项目中,本指南是高效而强大的web开发路线图。 安装…

Visual Studio Community 2022(VS2022)安装方法

废话不多说直接上图: 直接上步骤: 1,首先可以下载安装一个Visual Studio安装器,叫做Visual Studio installer。这个安装文件很小,很快就安装完成了。 2,打开Visual Studio installer 小软件 3&#xff0c…

《offer 来了:Java 面试核心知识点精讲 -- 原理篇》

在 Java 面试的战场上,只知皮毛可不行,面试官们越来越看重对原理的理解。今天就给大家分享一本能让你在面试中脱颖而出的 “武林秘籍”——《offer 来了:Java 面试核心知识点精讲 -- 原理篇》。 本书详细介绍了Java架构师在BAT和移动互联网公…

1,Linux环境变量基本定义(基于Ubuntu示例进行讲解)

linux环境变量的概念 Linux环境变量(准确说应该是shell变量),是直接存储在操作系统中的一组键值对(dict类型),用于配置系统和应用程序的操作行为。 【有经验的描述】:它们的工作原理很简单&am…

5、docker-compose和docker-harbor

安装部署docker-compose 自动编排工具,可以根据dockerfile自动化的部署docker容器。是yaml文件格式,注意缩进。 1、安装docker-compose 2、配置compose配置文件docker-compose.yml 3、运行docker-compose.yml -f:指定文件,up&…

b站视频(网页加客户端)+本地视频 生成回链

b站视频(网页加客户端)本地视频 生成回链 引言 基于上一篇博客方案 本地视频进度加入笔记根据进度快速锁定视频位置 我想着只有本地的话, 那b站上的视频, 不是每次都得下载下来吗? 如果是一套课程, 直接下载, 然后视频处理成mp3,还好, 如果只是一个视频, 每次这样处理就有点…

mac 安装 node

brew versions node // 安装 node brew versions node14 // 安装指定版本 卸载node: sudo npm uninstall npm -g sudo rm -rf /usr/local/lib/node /usr/local/lib/node_modules /var/db/receipts/org.nodejs.* sudo rm -rf /usr/local/include/node /Users/$USER/.npm su…

电子应用设计方案94:智能AI门禁系统设计

智能 AI 门禁系统设计 一、引言 智能 AI 门禁系统旨在提供更高效、安全和便捷的门禁控制解决方案,结合人工智能技术实现精准的身份识别和智能化的访问管理。 二、系统概述 1. 系统目标 - 实现高精度的人脸识别、指纹识别、虹膜识别等多模态生物识别技术。 - 具备智…

机器学习经典无监督算法——聚类K-Means算法

目录 算法原理 算法步骤 算法API 算法导入 API参数理解 算法实现 算法原理 Kmeans 算法是一种无监督的聚类算法,目的是将数据集中的样本划分到 K 个不同的簇中。 聚类:将数据集中相似的数据点归为一组或一个簇的过程。 数据集:一组相…