P6周:VGG-16算法-Pytorch实现人脸识别

  •  🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊
我的环境

语言环境:Python 3.8.12

编译器:jupyter notebook

深度学习环境:torch 1.12.0+cu113

一、前期准备
1.设置GPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')
2.导入数据
import os,PIL,random,pathlib

data_dir = 'F:/jupyter lab/DL-100-days/datasets/Hollywood_stars_photos/'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[5] for path in data_paths]
classeNames
['Angelina Jolie',
 'Brad Pitt',
 'Denzel Washington',
 'Hugh Jackman',
 'Jennifer Lawrence',
 'Johnny Depp',
 'Kate Winslet',
 'Leonardo DiCaprio',
 'Megan Fox',
 'Natalie Portman',
 'Nicole Kidman',
 'Robert Downey Jr',
 'Sandra Bullock',
 'Scarlett Johansson',
 'Tom Cruise',
 'Tom Hanks',
 'Will Smith']
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("F:/jupyter lab/DL-100-days/datasets/Hollywood_stars_photos/",transform=train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 1800
    Root location: F:/jupyter lab/DL-100-days/datasets/Hollywood_stars_photos/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
total_data.class_to_idx
{'Angelina Jolie': 0,
 'Brad Pitt': 1,
 'Denzel Washington': 2,
 'Hugh Jackman': 3,
 'Jennifer Lawrence': 4,
 'Johnny Depp': 5,
 'Kate Winslet': 6,
 'Leonardo DiCaprio': 7,
 'Megan Fox': 8,
 'Natalie Portman': 9,
 'Nicole Kidman': 10,
 'Robert Downey Jr': 11,
 'Sandra Bullock': 12,
 'Scarlett Johansson': 13,
 'Tom Cruise': 14,
 'Tom Hanks': 15,
 'Will Smith': 16}
3.划分数据集 
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
(<torch.utils.data.dataset.Subset at 0x187391e5a60>,
 <torch.utils.data.dataset.Subset at 0x187391e5b20>)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

二、调用官方的VGG16模型

from torchvision.models import vgg16

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
# 加载预训练模型,并且对模型进行微调
model = vgg16(pretrained = True).to(device) # 加载预训练的vgg16模型

for param in model.parameters():
    param.requires_grad = False # 冻结模型的参数,这样子在训练的时候只训练最后一层的参数

# 修改classifier模块的第6层(即:(6): Linear(in_features=4096, out_features=2, bias=True))
# 注意查看我们下方打印出来的模型
model.classifier._modules['6'] = nn.Linear(4096,len(classeNames)) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
model.to(device)  
model
Using cuda device
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace=True)
    (2): Dropout(p=0.5, inplace=False)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace=True)
    (5): Dropout(p=0.5, inplace=False)
    (6): Linear(in_features=4096, out_features=17, bias=True)
  )
)

三、训练循环 

1.编写训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
2.编写测试函数 
def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss
3.设置动态学习率 
# 调用官方动态学习率接口时使用
learn_rate = 1e-3 # 初始学习率
lambda1 = lambda epoch: 0.92 ** (epoch // 4)
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法
 4.正式训练
import copy

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
epochs     = 40

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    # adjust_learning_rate(optimizer, epoch, learn_rate)
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    
# 保存最佳模型到文件中
PATH = './best_model123.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')
Epoch: 1, Train_acc:11.9%, Train_loss:2.810, Test_acc:14.4%, Test_loss:2.639, Lr:1.00E-03
Epoch: 2, Train_acc:17.4%, Train_loss:2.590, Test_acc:15.3%, Test_loss:2.512, Lr:1.00E-03
Epoch: 3, Train_acc:17.8%, Train_loss:2.483, Test_acc:17.5%, Test_loss:2.400, Lr:1.00E-03
Epoch: 4, Train_acc:21.0%, Train_loss:2.409, Test_acc:20.8%, Test_loss:2.344, Lr:9.20E-04
Epoch: 5, Train_acc:22.1%, Train_loss:2.331, Test_acc:23.9%, Test_loss:2.289, Lr:9.20E-04
...........
Epoch:36, Train_acc:42.2%, Train_loss:1.763, Test_acc:38.9%, Test_loss:1.858, Lr:4.72E-04
Epoch:37, Train_acc:43.8%, Train_loss:1.744, Test_acc:39.2%, Test_loss:1.872, Lr:4.72E-04
Epoch:38, Train_acc:44.0%, Train_loss:1.747, Test_acc:39.4%, Test_loss:1.872, Lr:4.72E-04
Epoch:39, Train_acc:43.9%, Train_loss:1.744, Test_acc:39.7%, Test_loss:1.859, Lr:4.72E-04
Epoch:40, Train_acc:44.4%, Train_loss:1.731, Test_acc:39.7%, Test_loss:1.885, Lr:4.34E-04
Done

四、结果可视化

1.Loss与Accuracy图
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

from datetime import datetime
current_time = datetime.now() # 获取当前时间

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 

2.对指定图片进行预测 
from PIL import Image 

classes = list(total_data.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='F:/jupyter lab/DL-100-days/datasets/Hollywood_stars_photos/Angelina Jolie/001_fe3347c0.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)
预测结果是:Angelina Jolie

 3.模型评估
best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss
(0.3972222222222222, 1.8640953699747722)
# 查看是否与我们记录的最高准确率一致
epoch_test_acc
0.3972222222222222

五、学习心得

1.本次使用pytorch深度学习环境对官方的VGG-16模型进行调用,并且保存最佳模型权重。VGG-16模型的最大特点是深度。除此之外,其卷积层都采用3x3的卷积核和步长为1的卷积操作,同时卷积层后都有ReLU激活函数,从而降低过拟合风险。

2.训练过程中发现训练和测试的acc都过低(约为20%),通过调整动态学习率予以调整,初始学习率增大一个数量级之后,此问题得到一定的解决。

3.下一步将自行搭建VGG-16模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/955334.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu、Windows系统网络设置(ping通内外网)

一、 虚拟机VMware和Ubuntu系统的网络配置说明 1、虚拟机的网络适配器的模式有三种&#xff1a; 桥接模式NAT模式主机模式 2、虚拟机VMware的网卡配置(如何进行配置界面(虚拟机->设置)) 注意&#xff1a; 1、以上桥接模式(ubuntu有独立IP)、NAT模式(没有独立IP)都可以联…

Web端实时播放RTSP视频流(监控)

一、安装ffmpeg: 1、官网下载FFmpeg: Download FFmpeg 2、点击Windows图标,选第一个:Windows builds from gyan.dev 3、跳转到下载页面: 4、下载后放到合适的位置,不用安装,解压即可: 5、配置path 复制解压后的\bin路径,配置环境变量如图: <

Mongodb相关内容

Mongodb相关内容 1、Windows平台安装2、Linux平台安装3、基本常用命令文档更新删除文档分页查询索引 pymongo操作 客户端下载&#xff1a;https://download.csdn.net/download/guoqingru0311/90273435 1、Windows平台安装 方式一&#xff1a; 方式2&#xff1a; 方式3&#…

SQL2000在win10上安装的方法

安装前最好先关闭防火墙和一些杀毒软件&#xff0c;因为这些软件在安装过程中可能会碰到注册表等一下杀毒软件比较敏感的地带&#xff0c;如果违反杀毒软件的规则会被当做病毒强行终止删除 首相找到C盘下window文件中的sysWOW64文件 鼠标右键&#xff0c;点击属性、安全、高级 …

EAMM: 通过基于音频的情感感知运动模型实现的一次性情感对话人脸合成

EAMM: 通过基于音频的情感感知运动模型实现的一次性情感对话人脸合成 1所有的材料都可以在EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model网站上找到。 摘要 尽管音频驱动的对话人脸生成技术已取得显著进展&#xff0c;但现有方法要么忽…

【华为路由/交换机的ftp文件操作】

华为路由/交换机的ftp文件操作 PC&#xff1a;10.0.1.1 R1&#xff1a;10.0.1.254 / 10.0.2.254 FTP&#xff1a;10.0.2.1 S1&#xff1a;无配置 在桌面创建FTP-Huawei文件夹&#xff0c;里面创建config/test.txt。 点击上图中的“启动”按钮。 然后ftp到server&#xff0c;…

Web前端开发技术之HTMLCSS知识点总结

学习路线 一、新闻网界面1. 代码示例2. 效果展示3. 知识点总结3.1 HTML标签和字符实体3.2 超链接、颜色描述与标题元素3.3 关于图片和视频标签&#xff1a;3.4 CSS引入方式3.5 CSS选择器优先级 二、flex布局1. 代码示例2. 效果展示3. 知识点总结3.1 span标签和flex容器的区别3.…

基于SSM汽车美容管家【提供源码+答辩PPT+文档+项目部署】(高质量源码,可定制,提供文档,免费部署到本地)

作者简介&#xff1a;✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌ 主要内容&#xff1a;&#x1f31f;Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能…

idea gradle compiler error: package xxx does not exist

idea 编译运行task时报项目内的包不存在&#xff0c;如果你试了网上的其它方法还不能解决&#xff0c;应该是你更新了新版idea&#xff0c;项目用的是旧版jdk&#xff0c;请在以下编译器设置中把项目JDK字节码版本设为8&#xff08;jdk1.8&#xff0c;我这里是17请自行选择&…

1.17学习

crypto nssctf-[SWPUCTF 2021 新生赛]crypto8 不太认识这是什么编码&#xff0c;搜索一下发现是一个UUENCODE编码&#xff0c;用在线工具UUENCODE解码计算器—LZL在线工具解码就好 misc buuctf-文件中的秘密 下载附件打开后发现是一个图片&#xff0c;应该是一个图片隐写&…

Formality:参考设计/实现设计以及顶层设计

相关阅读 Formalityhttps://blog.csdn.net/weixin_45791458/category_12841971.html?spm1001.2014.3001.5482​​​ Formality存在两个重要的概念&#xff1a;参考设计/实现设计和顶层设计&#xff0c;本文就将对此进行详细阐述。参考设计/实现设计是中两个重要的全局概念&am…

Spring Web MVC综合案例

承接上篇文章——Spring Web MVC探秘&#xff0c;在了解Spring Web MVC背后的工作机制之后&#xff0c;我们接下来通过三个实战项目&#xff0c;来进一步巩固一下前面的知识。 一、计算器 效果展示&#xff1a;访问路径&#xff1a;http://127.0.0.1:8080/calc.html 前端代码&a…

C# 25Dpoint

C# 25Dpoint &#xff0c;做一个备份 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms;namespace _25Dpoint {public partial cl…

初识Modbus

初识Modbus Modbus TCP协议前置知识TCP三次握手&#xff1a;数据传输确认&#xff1a;四次挥手 Modbus TCP协议 Modbus协议是一种应用层的报文传输协议 分三种传输方式 RTUASCIITCP 前置知识 TCP协议&#xff0c;UDP协议都是工作在传输层&#xff0c;用与程序之前的数据传…

43.Textbox的数据绑定 C#例子 WPF例子

固定最简步骤&#xff0c;包括 XAML&#xff1a; 题头里引入命名空间 标题下面引入类 box和block绑定属性 C#&#xff1a; 通知的类&#xff0c;及对应固定的任务 引入字段 引入属性 属性双触发&#xff0c;其中一个更新block的属性 block>指向box的属性 从Textbo…

【0x02】HCI_Inquiry_Result事件详解

目录 一、事件概述 1.1. 事件参数 1.2. 事件描述 1.3. 与查询过程的关联 1.4. 相关事件对比 二、事件内容 2.1. HCI_Inquiry_Result事件格式 2.2. Num_Responses 2.3. BD_ADDR[i] 2.4. Page_Scan_Repetition_Mode[i] 2.5. Reserved[i] 2.6. Class_Of_Device[i] 2…

[c语言日寄](bit)位检查——初探字节之下

哈喽大家好啊&#xff0c;在今天的快乐刷题中&#xff0c;我遇到了一个很有意思的题目&#xff1a; 题目 统计二进制中1的个数 基本思路 没错……这道题的对象比较特殊。 不同于过去常见的题目&#xff0c;之前的题目的对象都是基本数据类型&#xff0c;而这道题的对象却是…

音频语言模型与多模态体系结构

音频语言模型与多模态体系结构 多模态模型正在创造语言、视觉和语音等以前独立的研究领域的协同效应。这些模型使用通用架构,将每种模式视为不同的“token”,使它们能够以一种与人类认知非常相似的方式联合建模和理解世界。 ​ ​可以将多模态分为两个主要领域:输入空间(…

25/1/15 嵌入式笔记 初学STM32F108

GPIO初始化函数 GPIO_Ini&#xff1a;初始化GPIO引脚的模式&#xff0c;速度和引脚号 GPIO_Init(GPIOA, &GPIO_InitStruct); // 初始化GPIOA的引脚0 GPIO输出控制函数 GPIO_SetBits&#xff1a;将指定的GPIO引脚设置为高电平 GPIO_SetBits(GPIOA, GPIO_Pin_0); // 将GPIO…

《机器学习》——SVD(奇异分解)降维

文章目录 SVD基本定义SVD降维的步骤SVD降维使用场景SVD 降维的优缺点SVD降维实例导入所需库定义SVD降维函数导入图像处理图像处理图像打印降维结果并显示处理后两个图像的对比图 SVD基本定义 简单来说就是&#xff0c;通过SVD&#xff08;奇异值分解&#xff09;对矩阵数据进行…