SDK调用文心一言如何接入,文心一言API接入教程

一、前期准备

  1. 注册百度智能云账号

    • 前往百度智能云官网注册一个账号。这是接入文心一言API的基础。
  2. 了解API接口

    • 在百度智能云开放平台中,找到文心一言API的详情页,了解提供的API接口类型(如云端API、移动端API、离线版API等)及其功能特点。
    • 根据应用场景和需求,选择适合的API接口。

二、创建应用并获取API密钥

  1. 登录百度智能云千帆控制台

    • 使用百度智能云账号登录千帆控制台。
  2. 创建应用

    • 在控制台中,点击“创建应用”按钮。
    • 根据提示填写应用名称、描述等信息。
    • 创建成功后,将获取到AppID、API Key、Secret Key等关键信息。
  3. 获取API密钥

    • 在应用详情页中查看并复制API Key和Secret Key。这两个密钥将用于后续调用API接口时的身份验证。

最后就是能过SDK调用

调用本接口,发起一次对话请求。

支持模型列表

模型名称模型版本model 参数值
ERNIE 4.0ERNIE-4.0-8K-Latesternie-4.0-8k-latest
ERNIE 4.0ERNIE-4.0-8K-Previewernie-4.0-8k-preview
ERNIE 4.0ERNIE-4.0-8Kernie-4.0-8k
ERNIE 4.0 TurboERNIE-4.0-Turbo-8K-Latesternie-4.0-turbo-8k-latest
ERNIE 4.0 TurboERNIE-4.0-Turbo-8K-Previewernie-4.0-turbo-8k-preview
ERNIE 4.0 TurboERNIE-4.0-Turbo-8Kernie-4.0-turbo-8k
ERNIE 4.0 TurboERNIE-4.0-Turbo-128Kernie-4.0-turbo-128k
ERNIE 3.5ERNIE-3.5-8K-Previewernie-3.5-8k-preview
ERNIE 3.5ERNIE-3.5-8Kernie-3.5-8k
ERNIE 3.5ERNIE-3.5-128Kernie-3.5-128k
ERNIE SpeedERNIE-Speed-8Kernie-speed-8k
ERNIE SpeedERNIE-Speed-128Kernie-speed-128k
ERNIE SpeedERNIE-Speed-Pro-128Kernie-speed-pro-128k
ERNIE LiteERNIE-Lite-8Kernie-lite-8k
ERNIE LiteERNIE-Lite-Pro-128Kernie-lite-pro-128k
ERNIE TinyERNIE-Tiny-8Kernie-tiny-8k
ERNIE CharacterERNIE-Character-8Kernie-char-8k
ERNIE CharacterERNIE-Character-Fiction-8Kernie-char-fiction-8k
ERNIE-Novel-8KERNIE-Novel-8Kernie-novel-8k



使用说明

本文API支持通过Python SDK、Go SDK和Node.js SDK调用,调用流程请参考SDK安装及使用流程。

  • Python SDK,请确保使用最新版本,版本需≥0.4.11。
  • Go SDK,请确保使用最新版本,版本需≥0.0.13。
  • Node.js SDK,请确保使用最新版本,版本需≥0.2.2。

SDK调用

调用示例(非流式)

使用model字段,指定平台支持预置服务的模型,调用示例如下。

  • Python
  • Go
  • Java
  • Node.js
from qianfan import Qianfan

client = Qianfan(
 
    # 方式一:使用安全认证AK/SK鉴权
    # 替换下列示例中参数,安全认证Access Key替换your_iam_ak,Secret Key替换your_iam_sk,如何获取请查看https://cloud.baidu.com/doc/Reference/s/9jwvz2egb
    access_key="your_iam_ak",
    secret_key="your_iam_sk",
    #app_id="", # 选填,不填写则使用默认appid

    # 方式二:使用应用BearerToken鉴权
    # 替换下列示例中参数,将your_BearerToken替换为真实值,如何获取请查看https://cloud.baidu.com/doc/IAM/s/Mm2x80phi
    #api_key="your_BearerToken" 
    #app_id="", # 选填,不填写则使用默认appid
)

completion = client.chat.completions.create(
    model="ernie-3.5-8k", # 指定特定模型
    messages=[ 
        # 也可以不设置system字段
        {'role': 'system', 'content': '平台助手'},
        {'role': 'user', 'content': '你好'}
    ]
)

print(completion.choices[0])

返回示例(非流式)

  • Python
  • Go
  • Java
  • Node.js
finish_reason='normal' index=0 message=ChatCompletionMessage(content='您好!请问您是想了解关于“平台助手”的信息吗?如果是的话,能否具体说明一下您想了解的是哪个平台或者哪种类型的助手呢?这样我可以为您提供更详细和准确的信息。', role='assistant', name=None, content_type=None, function_call=None) need_clear_history=None ban_round=None function_call=None search_info=None flag=0 tools_info=None

调用示例(流式)

  • Python
  • Go
  • Java
  • Node.js
from qianfan import Qianfan

client = Qianfan(
 
    # 方式一:使用安全认证AK/SK鉴权
    # 替换下列示例中参数,安全认证Access Key替换your_iam_ak,Secret Key替换your_iam_sk,如何获取请查看https://cloud.baidu.com/doc/Reference/s/9jwvz2egb
    access_key="your_iam_ak",
    secret_key="your_iam_sk",
    #app_id="", # 选填,不填写则使用默认appid

    # 方式二:使用应用BearerToken鉴权
    # 替换下列示例中参数,将your_BearerToken替换为真实值,如何获取请查看https://cloud.baidu.com/doc/IAM/s/Mm2x80phi
    #api_key="your_BearerToken" 
    #app_id="", # 选填,不填写则使用默认appid
)

completion = client.chat.completions.create(
    model="ernie-3.5-8k", # 指定特定模型
    messages=[ 
        {'role': 'system', 'content': '平台助手'},
        {'role': 'user', 'content': '你好'}
    ],
    stream=True
)

for r in completion:
    print(r)

返回示例(流式)

  • Python
  • Go
  • Java
  • Node.js
id='as-gue7zc41p4' choices=[CompletionChunkChoice(delta=ChoiceDelta(content='您好!'), finish_reason=None, index=0)] created=1733465174 model='ernie-3.5-8k' object='chat.completion.chunk' usage=None statistic=CompletionStatistic(first_token_latency=0.49492, request_latency=0.0, total_latency=0.0, start_timestamp=1733465172918.0, avg_output_tokens_per_second=0.0)
id='as-gue7zc41p4' choices=[CompletionChunkChoice(delta=ChoiceDelta(content='很高兴与您'), finish_reason=None, index=0)] created=1733465174 model='ernie-3.5-8k' object='chat.completion.chunk' usage=None statistic=CompletionStatistic(first_token_latency=0.49492, request_latency=0.0, total_latency=0.0, start_timestamp=1733465172918.0, avg_output_tokens_per_second=0.0)
id='as-gue7zc41p4' choices=[CompletionChunkChoice(delta=ChoiceDelta(content='交流。'), finish_reason=None, index=0)] created=1733465174 model='ernie-3.5-8k' object='chat.completion.chunk' usage=None statistic=CompletionStatistic(first_token_latency=0.49492, request_latency=0.0, total_latency=0.0, start_timestamp=1733465172918.0, avg_output_tokens_per_second=0.0)
id='as-gue7zc41p4' choices=[CompletionChunkChoice(delta=ChoiceDelta(content='您提到的'), finish_reason=None, index=0)] created=1733465174 model='ernie-3.5-8k' object='chat.completion.chunk' usage=None statistic=CompletionStatistic(first_token_latency=0.49492, request_latency=0.0, total_latency=0.0, start_timestamp=1733465172918.0, avg_output_tokens_per_second=0.0)
id='as-gue7zc41p4' choices=[CompletionChunkChoice(delta=ChoiceDelta(content='“平台'), finish_reason=None, index=0)] created=1733465174 model='ernie-3.5-8k' object='chat.completion.chunk' usage=None statistic=CompletionStatistic(first_token_latency=0.49492, request_latency=0.0, total_latency=0.0, start_timestamp=1733465172918.0, avg_output_tokens_per_second=0.0)
...

function call调用示例

  • 第一次请求
  • Python
from qianfan import Qianfan
import os

#通过环境变量初始化认证信息
# 使用安全认证AK/SK鉴权,替换下列示例中参数,安全认证Access Key替换your_iam_ak,Secret Key替换your_iam_sk
os.environ["QIANFAN_ACCESS_KEY"] = "your_iam_ak"
os.environ["QIANFAN_SECRET_KEY"] = "your_iam_sk"

client = Qianfan()

completion = client.chat.completions.create(
    model="ernie-3.5-8k",
    messages=[{"role": "user", "content": "你好,我想知道明天北京的天气怎么样"}],
    tools=[{
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "天气查询工具",
            "parameters": {
                "properties": {
                    "location": {
                        "description": "地理位置,精确到区县级别",
                        "type": "string"
                    },
                    "time": {
                        "description": "时间,格式为YYYY-MM-DD",
                        "type": "string"
                    }
                },
                "required": ["location", "time"],
                "type": "object"
            }
        }
    }],
)

print(completion.json(ensure_ascii=False))
  • 第二次请求
  • Python
from qianfan import Qianfan
import os

#通过环境变量初始化认证信息
# 使用安全认证AK/SK鉴权,替换下列示例中参数,安全认证Access Key替换your_iam_ak,Secret Key替换your_iam_sk
os.environ["QIANFAN_ACCESS_KEY"] = "your_iam_ak"
os.environ["QIANFAN_SECRET_KEY"] = "your_iam_sk"

client = Qianfan()

# 模拟函数调用并给出结果

completion = client.chat.completions.create(
    model="ernie-3.5-8k",
    messages=[
        {"role": "user", "content": "你好,我想知道明天北京的天气怎么样"},
        {'content': '', 'role': 'assistant', 'name': None, 'tool_calls': [{'id': '19eaa3faef0ca000', 'type': 'function', 'function': {'name': 'get_current_weather', 'arguments': '{"location": "北京", "time": "2024-12-14"}'}}], 'tool_call_id': None},
        {"role": "tool", "tool_call_id": "19exxxxx00", "name": "get_current_weather", "content": "{\"temperature\": \"20\", \"unit\": \"摄氏度\", \"description\": \"北京\"}"},
    ],
    tools=[{
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "天气查询工具",
            "parameters": {
                "properties": {
                    "location": {
                        "description": "地理位置,精确到区县级别",
                        "type": "string"
                    },
                    "time": {
                        "description": "时间,格式为YYYY-MM-DD",
                        "type": "string"
                    }
                },
                "required": ["location", "time"],
                "type": "object"
            }
        }
    }],
)

print(completion.json(ensure_ascii=False))

function call响应示例

  • 第一次响应
  • Python
{
	"id": "as-0bd3fqniat",
	"choices": [{
		"finish_reason": "tool_calls",
		"index": 0,
		"message": {
			"content": "",
			"role": "assistant",
			"name": null,
			"tool_calls": [{
				"id": "19eaa550a7344000",
				"type": "function",
				"function": {
					"name": "get_current_weather",
					"arguments": "{\"location\": \"北京\", \"time\": \"2024-12-14\"}"
				}
			}],
			"tool_call_id": null
		},
		"ban_round": null,
		"flag": 0
	}],
	"created": 1734078514,
	"model": "ernie-3.5-8k",
	"object": "chat.completion",
	"usage": {
		"completion_tokens": 26,
		"prompt_tokens": 7,
		"total_tokens": 33
	},
	"statistic": {
		"first_token_latency": 0,
		"request_latency": 2.197312,
		"total_latency": 2.557672722,
		"start_timestamp": 1734078512335.0,
		"avg_output_tokens_per_second": 10.165491376734478
	}
}
  • 第二次响应
  • Python
{
	"id": "as-1yunj9bnbx",
	"choices": [{
		"finish_reason": "normal",
		"index": 0,
		"message": {
			"content": "明天北京的天气温度是20摄氏度。请问您还有其他需要了解的吗?",
			"role": "assistant",
			"name": null,
			"tool_calls": null,
			"tool_call_id": null
		},
		"ban_round": null,
		"flag": 0
	}],
	"created": 1734078216,
	"model": "ernie-3.5-8k",
	"object": "chat.completion",
	"usage": {
		"completion_tokens": 15,
		"prompt_tokens": 26,
		"total_tokens": 41
	},
	"statistic": {
		"first_token_latency": 0,
		"request_latency": 2.704354,
		"total_latency": 2.936778522,
		"start_timestamp": 1734078212974.0,
		"avg_output_tokens_per_second": 5.107637463169924
	}
}

请求参数

Python SDK请求参数说明如下,Go SDK参数请参考Go SDK-对话Chat V2参数相关说明。

名称类型必填描述
modelstring模型ID,可选值参考本文支持模型列表
messagesList聊天上下文信息。说明:
(1)messages成员不能为空,1个成员表示单轮对话,多个成员表示多轮对话,例如:
· 1个成员示例,"messages": [ {"role": "user","content": "你好"}]
· 3个成员示例,"messages": [ {"role": "user","content": "你好"},{"role":"assistant","content":"需要什么帮助"},{"role":"user","content":"自我介绍下"}]
(2) 最后一个message为当前请求的信息,前面的message为历史对话信息
(3)messages的role说明:
· 第一条message的role必须是user或system
· 最后一条message的role必须是user
· 当第一条message的role为user,role值需要依次为user/function -> assistant -> user/function ...,即奇数位message的role值必须为user或function,偶数位message的role值为assistant,例如:
示例中message中的role值分别为user、assistant、user、assistant、user;奇数位(红框)message中的role值为user,即第1、3、5个message中的role值为user;偶数位(蓝框)值为assistant,即第2、4个message中的role值为assistant

image.png


· 当第一条message的role为system,role值需要依次为system -> user/function -> assistant -> user/function ...
(4)message中的content总长度不能超过对应model的输入字符限制和输入tokens限制,请查看各模型上下文长度说明
streambool是否以流式接口的形式返回数据,说明:
(1)beam search模型只能为false
(2)默认false
stream_optionsobject流式响应的选项,当字段stream为true时,该字段生效
temperaturefloat说明:
(1)较高的数值会使输出更加随机,而较低的数值会使其更加集中和确定
(2)默认0.95,范围 (0, 1.0],不能为0
top_pfloat说明:
(1)影响输出文本的多样性,取值越大,生成文本的多样性越强
(2)默认0.7,取值范围 [0, 1.0]
penalty_scorefloat通过对已生成的token增加惩罚,减少重复生成的现象。说明:
(1)值越大表示惩罚越大
(2)默认1.0,取值范围:[1.0, 2.0]
max_completion_tokensint指定模型最大输出token数,说明:
(1)取值范围[2, 2048]
seedint说明:
(1)取值范围: (0,2147483647‌),会由模型随机生成,默认值为空
(2)如果指定,系统将尽最大努力进行确定性采样,以便使用相同seed和参数的重复请求返回相同的结果
stopList生成停止标识,当模型生成结果以stop中某个元素结尾时,停止文本生成。说明:
(1)每个元素长度不超过20字符
(2)最多4个元素
userstring表示最终用户的唯一标识符
frequency_penaltyfloat说明:
(1)正值根据迄今为止文本中的现有频率对新token进行惩罚,从而降低模型逐字重复同一行的可能性
(2)取值范围:[-2.0, 2.0]
(3)支持以下模型:
· ernie-speed-8k
· ernie-speed-128k
· ernie-speed-pro-128k
· ernie-lite-8k
· ernie-lite-pro-128k
· ernie-tiny-8k
· ernie-char-8k
· ernie-char-fiction-8k
presence_penaltyfloat说明:
(1)正值根据token记目前是否出现在文本中来对其进行惩罚,从而增加模型谈论新主题的可能性
(2)取值范围:[-2.0, 2.0]
(3)支持以下模型:
· ernie-speed-8k
· ernie-speed-128k
· ernie-speed-pro-128k
· ernie-lite-8k
· ernie-lite-pro-128k
· ernie-tiny-8k
· ernie-char-8k
· ernie-char-fiction-8k
toolsList(Tool)一个可触发函数的描述列表,支持模型请参考本文支持模型列表-是否支持function call功能
tool_choicestring / tool_choice说明:
(1)支持模型请参考本文支持模型列表-是否支持function call功能
(2)string类型,可选值如下:
· none:不希望模型调用任何function,只生成面向用户的文本消息
· auto:模型会根据输入内容自动决定是否调用函数以及调用哪些function
· required:希望模型总是调用一个或多个function
(3)当为tool_choice类型,指在函数调用场景下,提示大模型选择指定的函数,指定的函数名必须在tools中存在
parallel_tool_callsbool说明:
(1)支持模型请参考本文支持模型列表-是否支持function call功能
(2)可选值:
· true:表示开启函数并行调用,默认开启
· false:表示关闭函数并行调用
response_formatresponse_format指定响应内容的格式
retry_countint重试次数,默认1次
request_timeoutfloat请求超时时间,默认60秒
backoff_factorfloat请求重试参数,用于指定重试的策略,默认为0

message说明

名称类型必填描述
rolestring当前支持以下:
· user: 表示用户
· assistant: 表示对话助手
· system:表示人设
namestringmessage名
contentstring对话内容,说明:
(1)不能为空
(2)最后一个message对应的content不能为blank字符,如空格、"\n"、“\r”、“\f”等
tool_callsList[ToolCall]函数调用,function call场景下第一轮对话的返回,第二轮对话作为历史信息在message中传入
tool_call_idstring说明:
(1)当role=tool时,该字段必填
(2)模型生成的function call id,对应tool_calls中的tool_calls[].id
(3)调用方应该传递真实的、由模型生成id,否则效果有损

stream_options说明

名称类型必填
include_usagebool流式响应是否输出usage,说明:
· ture:是,设置为true时,在最后一个chunk会输出一个字段,这个chunk上的usage字段显示整个请求的token统计信息
· false:否,流式响应默认不输出usage

Tool 说明

名称类型必填描述
typestring工具类型,取值function
functionfunction函数说明

function说明

Tool中function说明如下

名称类型必填描述
namestring函数名
descriptionstring函数描述
parametersobject函数请求参数,JSON Schema 格式,参考JSON Schema描述

tool_choice说明

名称类型必填描述
typestring指定工具类型,固定值function
functionfunction指定要使用的函数

function说明

tool_choice中function说明如下

名称类型必填描述
namestring指定要使用的函数名

response_format说明

名称类型描述
typestring指定响应内容的格式,可选值:
· json_object:以json格式返回,可能出现不满足效果情况
· text:以文本格式返回,默认为text
· json_schema:以json_scheam规定的格式返回
json_schemaobjectjson_schema格式,请参考JSON Schema描述;当type为json_schema时,该参数必填

响应参数

名称类型描述
idstring本次请求的唯一标识,可用于排查问题
objectstring回包类型 chat.completion:多轮对话返回
createdint时间戳
modelstring模型ID
choicesobjectstream=false时,返回内容
choicessse_choicesstream=true时,返回内容
usageusagetoken统计信息,说明:
(1)同步请求默认返回
(2)流式请求默认不返回,当开启stream_options.include_usage=True时,会在最后一个chunk返回实际内容,其他chunk返回null

choices说明

当stream=false时,返回内容如下:

名称类型描述
indexintchoice列表中的序号
messagemessage响应信息,当stream=false时返回
finish_reasonstring输出内容标识,说明:
· normal:输出内容完全由大模型生成,未触发截断、替换
· stop:输出结果命中入参stop中指定的字段后被截断
· length:达到了最大的token数
· content_filter:输出内容被截断、兜底、替换为**等
· tool_calls:函数调用
flagint安全细分类型,说明:
当stream=false,flag值含义如下:
· 0或不返回:安全
· 1:低危不安全场景,可以继续对话
· 2:禁聊:不允许继续对话,但是可以展示内容
· 3:禁止上屏:不允许继续对话且不能上屏展示
· 4:撤屏
ban_roundint当flag 不为 0 时,该字段会告知第几轮对话有敏感信息;如果是当前问题,ban_round = -1

sse_choices说明

当stream=true时,返回内容如下:

名称类型描述
indexintchoice列表中的序号
deltadelta响应信息,当stream=true时返回
finish_reasonstring输出内容标识,说明:
· normal:输出内容完全由大模型生成,未触发截断、替换
· stop:输出结果命中入参stop中指定的字段后被截断· length:达到了最大的token数
· content_filter:输出内容被截断、兜底、替换为**等
· tool_calls:函数调用
flagint安全细分类型,说明:当stream=true时,返回flag表示触发安全
ban_roundint当flag 不为 0 时,该字段会告知第几轮对话有敏感信息;如果是当前问题,ban_round = -1

delta说明

名称类型描述
contentstring流式响应内容
tool_callsList[ToolCall]由模型生成的函数调用,包含函数名称,和调用参数

ToolCall说明

名称类型描述
idstringfunction call的唯一标识,由模型生成
typestring固定值function
functionfunctionfunction call的具体内容

function说明

名称类型描述
namestring函数名称
argumentsstring函数参数

usage说明

名称类型描述
prompt_tokensint问题tokens数(包含历史QA)
prompt_tokens_detailsint问题token详情
completion_tokensint回答tokens数
total_tokensint总tokens数

prompt_tokens_details说明

名称类型描述
search_tokensint触发检索增强以后膨胀的token;用户可以通过usage.prompt_tokens_details.search_tokens>0判断是否出发了检索增强,并且计算出发检索增强的次数

message说明

名称类型必填描述
rolestring当前支持以下:
· user: 表示用户
· assistant: 表示对话助手
· system:表示人设
namestringmessage名
contentstring对话内容,说明:
(1)不能为空
(2)最后一个message对应的content不能为blank字符,如空格、"\n"、“\r”、“\f”等
tool_callsList[ToolCall]函数调用,function call场景下第一轮对话的返回,第二轮对话作为历史信息在message中传入
tool_call_idstring说明:
(1)当role=tool时,该字段必填
(2)模型生成的function call id,对应tool_calls中的tool_calls[].id
(3)调用方应该传递真实的、由模型生成id,否则效果有损

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/952549.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CNN张量输入形状和特征图

CNN张量输入形状和特征图 这个是比较容易理解的张量的解释,比较直观 卷积神经网络 在这个神经网络编程系列中,我们正在逐步构建一个卷积神经网络(CNN),所以让我们看看CNN的张量输入。 ​ ​ 在最后两篇文章中&…

【Linux】4.Linux常见指令以及权限理解(2)

文章目录 3. Linux指令3.1 ls指令和rm指令补充3.2 man指令(重要)3.3cp指令(重要)输出重定向3.3.1ubuntu20.04如何安装tree 3.4 mv指令(重要)mv指令更改文件名mv指令更改目录名 如何看待指令指令的重命名3.5…

硬件设计-齐纳管

目录 摘要 详情 齐纳管的工作电流、 摘要 齐纳管(Zener Diode)是一种特殊的二极管,它能够在特定的反向电压下保持电流稳定。正常情况下,二极管只允许正向电流通过,而阻止反向电流流过。而齐纳管在一定的反向电压下可…

C语言进阶——1数据的存储

目录 1. 数据类型介绍1.1 类型的基本归类:1.1.1 整形家族1.1.2 浮点型家族1.1.3 构造类型:1.1.4.指针类型1.1.5 void 表示空类型(无类型) 2. 整形在内存中的存储2.1 原码、反码、补码2.1.1 示例 20在计算机中的存储 2.2 大小端2.2…

【论文阅读】MAMBA系列学习

Mamba code:state-spaces/mamba: Mamba SSM architecture paper:https://arxiv.org/abs/2312.00752 背景 研究问题:如何在保持线性时间复杂度的同时,提升序列建模的性能,特别是在处理长序列和密集数据(如…

数据结构——查找二叉树

二叉搜索树的概念 如图所示&#xff0c;二叉搜索树&#xff08;binary search tree&#xff09;满足以下条件。 对于根节点&#xff0c;左子树中所有节点的值 < 根节点的值 < 右子树中所有节点的值。任意节点的左、右子树也是二叉搜索树&#xff0c;即同样满足条件 1. …

【并发多个请求并失败重发】

文章目录 需求思路代码 需求 可以一次发任意多个请求&#xff0c;如果有失败&#xff0c;则重发失败的请求&#xff0c;知道所有的都成功&#xff0c;或者超出最大重试次数&#xff0c;才返回最终结果。封装成可复用的并发请求工具。 实际的应用场景&#xff1a;数据太大&…

hutool糊涂工具通过注解设置excel宽度

import java.lang.annotation.*;Documented Retention(RetentionPolicy.RUNTIME) Target({ElementType.METHOD, ElementType.FIELD, ElementType.PARAMETER}) public interface ExcelStyle {int width() default 0; }/*** 聊天记录*/ Data public class DialogContentInfo {/**…

Redis高频知识点

Redis 目录 1 Redis是AP的还是CP的&#xff1f;2 介绍一下Redis的集群方案&#xff1f;3 什么是Redis的数据分片&#xff1f;4 Redis为什么这么快&#xff1f;5 Redis 的事务机制是怎样的&#xff1f;7 Redis的持久化机制是怎样的&#xff1f;8 Redis 的过期策略是怎么样的&a…

shell程序题1.11

作业&#xff1a; shell 脚本写出检测 /tmp/size.log 文件如果存在显示它的内容&#xff0c;不存在则创建一个文件将创建时间写入。 #!/bin/bash#-f 选项来判断 /tmp/size.log 文件是否是一个常规文件if [ -f "/tmp/size.log" ];thencat /tmp/size.logecho "…

Docker: 教程07 - ( 如何对 Docker 进行降级和升级)

如果我们使用 docker 来管理容器&#xff0c;那么保持 docker 引擎的更新将会是十分重要的&#xff0c;这一篇文章我们将会讨论如何对Docker 进行降级和升级。 准备工作 - docker 环境 我们需要拥有一个安装好 docker 的运行环境。 如果你需要了解如何安装 docker 可以通过如…

LabVIEW与CANopen常见问题及解决方法

1. 固件版本不匹配问题 ​ 错误信息&#xff1a; "Firmware image version is incompatible with C Series modules. Solution: Update the firmware by following the instructions in Firmware_Update_Instructions.html, accessible from the National Instruments\NI…

《框架程序设计》期末复习

目录 Maven 简介 工作机制&#xff08;★&#xff09; 依赖配置&#xff08;★&#xff09; Maven命令 MyBatis 入门 单参数查询&#xff08;★&#xff09; 多参数查询&#xff08;★★★&#xff09; 自定义映射关系&#xff08;★★★&#xff09; 基本增删改查操…

51单片机——I2C-EEPROM

I2C&#xff1a;总线标准或通信协议 EEPROM&#xff1a;AT24C02芯片 开发板板载了1个EEPROM模块&#xff0c;可实现IIC通信 1、EEPROM模块电路&#xff08;AT24C02&#xff09; 芯片的SCL和SDA管脚是连接在单片机的P2.1和P2.0上 2、I2C介绍 I2C&#xff08;Inter&#xff…

了解npm:JavaScript包管理工具

在JavaScript的生态系统中&#xff0c;npm&#xff08;Node Package Manager&#xff09;无疑是一个举足轻重的存在。它不仅是Node.js的包管理器&#xff0c;更是前端开发不可或缺的一部分&#xff0c;为开发者提供了丰富的包资源、便捷的包管理以及强大的社区支持。本文将深入…

Vscode辅助编码AI神器continue插件

案例效果 1、安装或者更新vscode 有些版本的vscode不支持continue,最好更新到最新版,也可以直接官网下载 https://code.visualstudio.com/Download 2、安装continue插件 搜索continue,还未安装的,右下脚有个Install,点击安装即可 <

ffmpeg aac s16 encode_audio.c

用ffmpeg库时&#xff0c;用代码对pcm内容采用aac编码进行压缩&#xff0c;出现如下错误。 [aac 000002bc5edc6e40] Format aac detected only with low score of 1, misdetection possible! [aac 000002bc5edc8140] Error decoding AAC frame header. [aac 000002bc5edc81…

what?ngify 比 axios 更好用,更强大?

文章目录 前言一、什么是ngify&#xff1f;二、npm安装三、发起请求3.1 获取 JSON 数据3.2 获取其他类型的数据3.3 改变服务器状态3.4 设置 URL 参数3.5 设置请求标头3.6 与服务器响应事件交互3.7 接收原始进度事件3.8 处理请求失败3.9 Http Observables 四、更换 HTTP 请求实现…

论文笔记(六十一)Implicit Behavioral Cloning

Implicit Behavioral Cloning 文章概括摘要1 引言2 背景&#xff1a;隐式模型的训练与推理3 隐式模型与显式模型的有趣属性4 policy学习成果5 理论见解&#xff1a;隐式模型的通用逼近性6 相关工作7 结论 文章概括 引用&#xff1a; inproceedings{florence2022implicit,titl…

CES 2025|美格智能高算力AI模组助力“通天晓”人形机器人震撼发布

当地时间1月7日&#xff0c;2025年国际消费电子展&#xff08;CES 2025&#xff09;在美国拉斯维加斯正式开幕。美格智能合作伙伴阿加犀联合高通在展会上面向全球重磅发布人形机器人原型机——通天晓&#xff08;Ultra Magnus&#xff09;。该人形机器人内置美格智能基于高通QC…