DAY39|动态规划Part07|LeetCode:198.打家劫舍、213.打家劫舍II、337.打家劫舍III

目录

LeetCode:198.打家劫舍

基本思路

C++代码

LeetCode:213.打家劫舍II

基本思路

C++代码

LeetCode:337.打家劫舍III

基本思路

C++代码


LeetCode:198.打家劫舍

力扣题目链接

文字讲解:LeetCode:198.打家劫舍

视频讲解:动态规划,偷不偷这个房间呢?

基本思路

        看到这个问题,很容易想到,需要对当前房屋偷与不偷两种状态进行判断,而这个状态和前一个房间和前两个房间是否被偷有很大的关系

        通过动规五部曲进行分析:

  • 确定dp数组(dp table)以及下标的含义

        dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]

  • 确定递推公式

        首先决定dp[i]的因素就是第i房间偷还是不偷。而如果偷了第i个房间,那么其偷盗金额就和前两个房间有关;如果不偷第i个房间,显然dp[i]和前一个房间的金额相同。

        因此容易推出递推公式为:dp[i] = max(dp[i-1],dp[i-2]+nums[i]);

  • dp数组如何初始化

        因为题目明确说明街道上存在一个以上的房屋,当街道上只有一个房屋时,我们直接返回nums[0],如果大于等于两个房屋时,我们令dp[0]为nums[0],令dp[1] = max(nums[0],nums[1]);

  • 确定遍历顺序

        dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!

for (int i = 2; i < nums.size(); i++) {
    dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
  • 举例推导dp数组

以示例二,输入[2,7,9,3,1]为例,红框dp[nums.size() - 1]为结果。

C++代码

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for (int i = 2; i < nums.size(); i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[nums.size() - 1];
    }
};

LeetCode:213.打家劫舍II

力扣题目链接

文字讲解:LeetCode:213.打家劫舍II

视频讲解:动态规划,房间连成环了那还偷不偷呢?

基本思路

        这个题目相对于上一个题目,不同点在于街道上的房子练成了一个圈,那么我们到底应不应该选择第一个房屋和最后一个房屋呢?

        很容易想到可以分成三种情况:

  • 情况一:考虑不包含首尾元素

  • 情况二:考虑包含首元素,不包含尾元素

  • 情况三:考虑包含尾元素,不包含首元素

        而在情况二和情况三种我们提到可以考虑包含首尾元素,而不是一定包含,因此情况一的情形实际上是包含在情况二和情况三中的。

        这个样子我们和容易和上个题目中的动规五部曲进行相同的分析了。无非就是进行判断的区间有所不同。

C++代码

// 注意注释中的情况二情况三,以及把198.打家劫舍的代码抽离出来了
class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        int result1 = robRange(nums, 0, nums.size() - 2); // 情况二
        int result2 = robRange(nums, 1, nums.size() - 1); // 情况三
        return max(result1, result2);
    }
    // 198.打家劫舍的逻辑
    int robRange(vector<int>& nums, int start, int end) {
        if (end == start) return nums[start];
        vector<int> dp(nums.size());
        dp[start] = nums[start];
        dp[start + 1] = max(nums[start], nums[start + 1]);
        for (int i = start + 2; i <= end; i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[end];
    }
};

LeetCode:337.打家劫舍III

力扣题目链接

文字讲解:LeetCode:337.打家劫舍III

视频讲解:动态规划,房间连成树了,偷不偷呢?

基本思路

        这个题目结合了二叉树的相关知识,如果忘记了的同学可以重新回顾一下二叉树相关的知识和题目。这个题目当然也可以使用二叉树递归的方法进行求解,但是我们知道二叉树的时间复杂度远大于动态规划的时间复杂度,这就很容易导致出现超时的情况。

        这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解

  • 确定递归函数的参数和返回值

        我们需要传入的是根节点,而返回的是所能偷到的最大金额,因此返回值是int类型。对于每个二叉树节点,我们需要求出对于当前节点偷与不偷两个状态。我们还需要设置一个函数,用来记录每个节点偷与不偷状态下所能获得的最大金额。传入的为当前节点的指针,返回为一个数组。

int rob(TreeNode* root)
vector<int> robTree(TreeNode* cur)
  • 确定终止条件

        对二叉树的所有节点进行遍历,当节点为空节点时,表示无论是否偷空节点,偷到的金额都为零,此时返回{0,0}。

if (cur == NULL) return vector<int>{0, 0};
  • 确定遍历顺序

        因为是否偷当前节点需要根据是否偷左右孩子获得的最大金额决定。因此需要先遍历左右孩子,在遍历中间节点,即遍历方式采用后序遍历。

  • 确定单层递归的逻辑

        遍历当前节点时,如果偷当前节点,那么就不能偷左右孩子,即取left[0]和right[0];如果不偷当前节点,那么就对左右节点是否偷盗的可以获得的金额求最大值。

vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右

// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
  • 举例推导dp数组

        以示例1为例,dp数组状态如下:

        最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱

C++代码

class Solution {
public:
    int rob(TreeNode* root) {
        vector<int> result = robTree(root);
        return max(result[0], result[1]);
    }
    // 长度为2的数组,0:不偷,1:偷
    vector<int> robTree(TreeNode* cur) {
        if (cur == NULL) return vector<int>{0, 0};
        vector<int> left = robTree(cur->left);
        vector<int> right = robTree(cur->right);
        // 偷cur,那么就不能偷左右节点。
        int val1 = cur->val + left[0] + right[0];
        // 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况
        int val2 = max(left[0], left[1]) + max(right[0], right[1]);
        return {val2, val1};
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/951481.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据结构——栈的实现

今天&#xff0c;我们来写一下关于栈的博文。 1.首先我们先了解一下什么是栈&#xff1f; 一&#xff1a;概念&#xff1a; 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。 进行数据插入和删除操作的一端称为栈顶&#xff0c;另…

uniapp 的uni.getRecorderManager() 录音功能小记

官网上明确说的是全局唯一并且只是获取对象&#xff0c;所以会导致一个问题就是&#xff0c;当你多个页面要用到这个对象的时候&#xff0c;会发现 onStop 方法会被覆盖&#xff0c;导致调用结果不是自己想要的 解决办法也简单粗暴&#xff0c;在需要用到的界面重新覆盖onStop…

Unity:删除注册表内的项目记录

然后WinR按键输入regedit 打开注册表 在注册表 HKEY CURRENT USER—>SOFTWARE—>Unity—>UnityEditor—>DefaultCompany —>language_Test 中&#xff0c;删除我们的之前存储的语言环境数据。在 “ 三、文本调用和替换 ” 测试时已经将语言环境存储到注册表中了…

标准应用 | 2025年网络安全服务成本度量实施参考

01 网络安全服务成本度量依据相关新变化 为了解决我国网络安全服务产业发展中面临的服务供需两方对于服务成本组成认知偏差较大、网络安全服务成本度量缺乏依据的问题&#xff0c;中国网络安全产业联盟&#xff08;CCIA&#xff09;组织北京赛西科技发展有限责任公司、北京安…

微信小程序map组件所有markers展示在视野范围内

注意&#xff1a;使用include-points属性不生效&#xff0c;要通过createMapContext实现 <template><view class"map-box"><map id"map" class"map" :markers"markers" :enable-traffic"true" :enable-poi&…

PLC实现HTTP协议JSON格式数据上报对接的参数配置说明

IGT-SER系列PLC通讯智能网关支持HTTP协议GET和POST、PUT请求模式。支持JSON格式的文件&#xff0c;也可以实现WebService的调用。 通常智能网关是HTTP协议的客户端&#xff0c;也可以同时作为HTTP的服务端。相关案例 作为客户端时支持触发、周期、混合等多种工…

微信小程序——创建滑动颜色条

在微信小程序中&#xff0c;你可以使用 slider 组件来创建一个颜色滑动条。以下是一个简单的示例&#xff0c;展示了如何实现一个颜色滑动条&#xff0c;该滑动条会根据滑动位置改变背景颜色。 步骤一&#xff1a;创建小程序项目 首先&#xff0c;使用微信开发者工具创建一个新…

Improving Language Understanding by Generative Pre-Training GPT-1详细讲解

Improving Language Understanding by Generative Pre-Training 2018.06 GPT-1 0.有监督、半监督、无监督 CV&#xff1a;ImageNet pre-trained model NLP&#xff1a;pre-trained model? 在计算机视觉中任务包含分类、检测、分割&#xff0c;任务类别数少&#xff0c;对应…

sql server cdc漏扫数据

SQL Server的CDC指的是“变更数据捕获”&#xff08;Change Data Capture&#xff09;。这是SQL Server数据库提供的一项功能&#xff0c;能够跟踪并记录对数据库表中数据所做的更改。这些更改包括插入、更新和删除操作。CDC可以捕获这些变更的详细信息&#xff0c;并使这些信息…

如何在 Ubuntu 22.04 上安装 Caddy Web 服务器教程

简介 Caddy 是一个开源的 Web 服务器&#xff0c;它支持静态和现代 Web 应用程序&#xff0c;使用预定义的配置规则&#xff0c;并为所有链接的域名自动启用 HTTPS。Caddy 使用 GO 语言编写&#xff0c;提供了用户友好的配置指令&#xff0c;使你既可以将其用作 Web 服务器&am…

《机器学习》——贝叶斯算法

贝叶斯简介 贝叶斯公式&#xff0c;又称贝叶斯定理、贝叶斯法则&#xff0c;最初是用来描述两个事件的条件概率间的关系的公式&#xff0c;后来被人们发现具有很深刻的实际意义和应用价值。该公式的实际内涵是&#xff0c;支持某项属性的事件发生得愈多&#xff0c;则该属性成…

边缘计算网关在机床设备数据采集中的应用

边缘计算网关是连接边缘设备和云端的一个中间节点&#xff0c;负责在边缘设备和云服务器之间进行数据传输和处理。它具备数据采集、数据处理、协议转换、数据存储、安全功能及远程管理等多种能力&#xff0c;是边缘计算系统中不可或缺的关键设备。 一、功能与优势 数据采集&a…

腾讯二面:MySQL的半同步是什么?不是MySQL的两阶段提交,那是什么?

前言 年后在进行腾讯二面的时候&#xff0c;写完算法的后问的第一个问题就是&#xff0c;MySQL的半同步是什么&#xff1f;我当时直接懵了&#xff0c;我以为是问的MySQL的两阶段提交的问题呢&#xff1f;结果确认了一下后不是两阶段提交&#xff0c;然后面试官看我连问的是啥都…

云计算基础,虚拟化原理

文章目录 一、虚拟化1.1 什么是虚拟化1.2 虚拟化类型 二 、存储虚拟化2.1 存储指标2.2 存储类型2.3 存储协议2.4 RAID 三、内存 i/O虚拟化3.1 内存虚拟化基本概念地址空间转换原理内存共享与隔离原理 3.2 I/O 虚拟化基本概念模拟&#xff08;Emulation&#xff09;方式半虚拟化…

【网络协议】IPv4 地址分配 - 第二部分

前言 在第 1 部分中&#xff0c;我们学习了 IPv4 地址的分配方式&#xff0c;了解了各种类型的 IPv4 地址&#xff0c;并进行了基础的子网划分&#xff08;Subnetting&#xff09;。在第 2 部分中&#xff0c;我们将继续学习子网划分&#xff0c;并引入一些新的概念。 【网络…

JAVA 使用apache poi实现EXCEL文件的输出;apache poi实现标题行的第一个字符为红色;EXCEL设置某几个字符为别的颜色

设置输出文件的列宽&#xff0c;防止文件过于丑陋 Sheet sheet workbook.createSheet(FileConstants.ERROR_FILE_SHEET_NAME); sheet.setColumnWidth(0, 40 * 256); sheet.setColumnWidth(1, 20 * 256); sheet.setColumnWidth(2, 20 * 256); sheet.setColumnWidth(3, 20 * 25…

Cursor 实战技巧:好用的提示词插件Cursor Rules

你好啊&#xff0c;见字如面。感谢阅读&#xff0c;期待我们下一次的相遇。 最近在小红书发现了有人分享这款Cursor提示词的插件&#xff0c;下面给各位分享下使用教程。简单来说Cursor Rules就是可以为每一个我们自己的项目去配置一个系统级别的提示词&#xff0c;这样在我们…

【简博士统计学习方法】第1章:3. 统计学习方法的三要素

3. 统计学习方法的三要素 3.1 监督学习的三要素 3.1.1 模型 假设空间&#xff08;Hypothesis Space&#xff09;&#xff1a;所有可能的条件概率分布或决策函数&#xff0c;用 F \mathcal{F} F表示。 若定义为决策函数的集合&#xff1a; F { f ∣ Y f ( X ) } \mathcal{F…

60.在 Vue 3 中使用 OpenLayers 绘制自由线段、自由多边形

前言 在现代 Web 开发中&#xff0c;地图功能已经成为许多应用的重要组成部分。OpenLayers 是一个强大的开源地图库&#xff0c;支持多种地图源和地图操作。结合 Vue 3 的响应式特性&#xff0c;我们可以轻松实现地图的交互功能。本文将详细介绍如何在 Vue 3 中使用 OpenLayer…

krpano 实现文字热点中的三角形和竖杆

krpano 实现文字热点中的三角形和竖杆 实现文字热点中的三角形和竖杆 一个后端写前端真的是脑阔疼 一个后端写前端真的是脑阔疼 一个后端写前端真的是脑阔疼 实现文字热点中的三角形和竖杆 上图看效果 v&#xff1a;2549789059