目录
LeetCode:198.打家劫舍
基本思路
C++代码
LeetCode:213.打家劫舍II
基本思路
C++代码
LeetCode:337.打家劫舍III
基本思路
C++代码
LeetCode:198.打家劫舍
力扣题目链接
文字讲解:LeetCode:198.打家劫舍
视频讲解:动态规划,偷不偷这个房间呢?
基本思路
看到这个问题,很容易想到,需要对当前房屋偷与不偷两种状态进行判断,而这个状态和前一个房间和前两个房间是否被偷有很大的关系。
通过动规五部曲进行分析:
- 确定dp数组(dp table)以及下标的含义
dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。
- 确定递推公式
首先决定dp[i]的因素就是第i房间偷还是不偷。而如果偷了第i个房间,那么其偷盗金额就和前两个房间有关;如果不偷第i个房间,显然dp[i]和前一个房间的金额相同。
因此容易推出递推公式为:dp[i] = max(dp[i-1],dp[i-2]+nums[i]);
- dp数组如何初始化
因为题目明确说明街道上存在一个以上的房屋,当街道上只有一个房屋时,我们直接返回nums[0],如果大于等于两个房屋时,我们令dp[0]为nums[0],令dp[1] = max(nums[0],nums[1]);
- 确定遍历顺序
dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!
for (int i = 2; i < nums.size(); i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
- 举例推导dp数组
以示例二,输入[2,7,9,3,1]为例,红框dp[nums.size() - 1]为结果。
C++代码
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 0) return 0;
if (nums.size() == 1) return nums[0];
vector<int> dp(nums.size());
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
for (int i = 2; i < nums.size(); i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[nums.size() - 1];
}
};
LeetCode:213.打家劫舍II
力扣题目链接
文字讲解:LeetCode:213.打家劫舍II
视频讲解:动态规划,房间连成环了那还偷不偷呢?
基本思路
这个题目相对于上一个题目,不同点在于街道上的房子练成了一个圈,那么我们到底应不应该选择第一个房屋和最后一个房屋呢?
很容易想到可以分成三种情况:
- 情况一:考虑不包含首尾元素
- 情况二:考虑包含首元素,不包含尾元素
- 情况三:考虑包含尾元素,不包含首元素
而在情况二和情况三种我们提到可以考虑包含首尾元素,而不是一定包含,因此情况一的情形实际上是包含在情况二和情况三中的。
这个样子我们和容易和上个题目中的动规五部曲进行相同的分析了。无非就是进行判断的区间有所不同。
C++代码
// 注意注释中的情况二情况三,以及把198.打家劫舍的代码抽离出来了
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 0) return 0;
if (nums.size() == 1) return nums[0];
int result1 = robRange(nums, 0, nums.size() - 2); // 情况二
int result2 = robRange(nums, 1, nums.size() - 1); // 情况三
return max(result1, result2);
}
// 198.打家劫舍的逻辑
int robRange(vector<int>& nums, int start, int end) {
if (end == start) return nums[start];
vector<int> dp(nums.size());
dp[start] = nums[start];
dp[start + 1] = max(nums[start], nums[start + 1]);
for (int i = start + 2; i <= end; i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[end];
}
};
LeetCode:337.打家劫舍III
力扣题目链接
文字讲解:LeetCode:337.打家劫舍III
视频讲解:动态规划,房间连成树了,偷不偷呢?
基本思路
这个题目结合了二叉树的相关知识,如果忘记了的同学可以重新回顾一下二叉树相关的知识和题目。这个题目当然也可以使用二叉树递归的方法进行求解,但是我们知道二叉树的时间复杂度远大于动态规划的时间复杂度,这就很容易导致出现超时的情况。
这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解。
- 确定递归函数的参数和返回值
我们需要传入的是根节点,而返回的是所能偷到的最大金额,因此返回值是int类型。对于每个二叉树节点,我们需要求出对于当前节点偷与不偷两个状态。我们还需要设置一个函数,用来记录每个节点偷与不偷状态下所能获得的最大金额。传入的为当前节点的指针,返回为一个数组。
int rob(TreeNode* root)
vector<int> robTree(TreeNode* cur)
- 确定终止条件
对二叉树的所有节点进行遍历,当节点为空节点时,表示无论是否偷空节点,偷到的金额都为零,此时返回{0,0}。
if (cur == NULL) return vector<int>{0, 0};
- 确定遍历顺序
因为是否偷当前节点需要根据是否偷左右孩子获得的最大金额决定。因此需要先遍历左右孩子,在遍历中间节点,即遍历方式采用后序遍历。
- 确定单层递归的逻辑
遍历当前节点时,如果偷当前节点,那么就不能偷左右孩子,即取left[0]和right[0];如果不偷当前节点,那么就对左右节点是否偷盗的可以获得的金额求最大值。
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
- 举例推导dp数组
以示例1为例,dp数组状态如下:
最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱。
C++代码
class Solution {
public:
int rob(TreeNode* root) {
vector<int> result = robTree(root);
return max(result[0], result[1]);
}
// 长度为2的数组,0:不偷,1:偷
vector<int> robTree(TreeNode* cur) {
if (cur == NULL) return vector<int>{0, 0};
vector<int> left = robTree(cur->left);
vector<int> right = robTree(cur->right);
// 偷cur,那么就不能偷左右节点。
int val1 = cur->val + left[0] + right[0];
// 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
}
};