Improving Language Understanding by Generative Pre-Training GPT-1详细讲解

Improving Language Understanding by Generative Pre-Training 2018.06 GPT-1
在这里插入图片描述

0.有监督、半监督、无监督
在这里插入图片描述
CV:ImageNet pre-trained model NLP:pre-trained model?
在计算机视觉中任务包含分类、检测、分割,任务类别数少,对应目标函数loss可控,加上数据容易标注,ImageNet pre-trainded model等易实现

难点:
NLP中任务太多,分类、问答、翻译、总结,分析等等各种任务,
1.利用未标记文本的挑战在于不清楚哪种优化目标对于学习有用的文本表示最为有效。
2.另一挑战是怎么样把学习到的无监督迁移到子任务中。
且标注数据较难,所以预训练模型在NLP中一直未大量使用。

1.GPT简介
GPT训练=无监督的预训练阶段(给定当前单词之前的上下文预测下一个词的概率来学习语言表示,生成式训练生成新的文本,基于统计)+有监督的微调阶段(特定任务上标注的数据微调训练,判别式微调)
本文提出的生成式预训练方法(Generative Pre-Training)基于各种未标记文本无监督、生成式预训练,并在每一个具体任务上进行区分性地有监督、判别式微调,可以使得在这些任务上取得很大的改进。——在文中被称为是半监督方法。
预训练方法通过在大规模数据集上训练神经网络,学习到一个通用表示,从而提高模型的泛化能力,有效地缓解了过拟合问题。因此,预训练方法可以被视为一种有效的正则化范式。

2.数据集
大型无标记文本语料库:语言建模学习神经网络初始参数,不要求目标任何与大型未标记的语料库处于同一域中
•BooksCorpus ,约8亿个单词
•1B Word Benchmark,约10亿个单词
有标记数据集:初始参数调整适应任务目标中

3.GPT transformer框架介绍
在这里插入图片描述
12-layer decoder-only transformer,GPT基于transformer的自回归语言模型,使用了单向的transformer解码器Decoder。
语言模型是利用上文预测下一个单词,只考虑当前单词之前的上下文,因为 Decoder 使用了 Masked Multi Self-Attention 屏蔽了当前单词后面的内容,所以 Decoder 是现成的语言模型。
text embedding+position embedding,输入是768维,经过12层 transformer block(带有掩码自注意力头(768维状态向量和12个注意力768=6412 ),每个key value query 是64维),得到transformer特征向量,通过linear线性层得到text的概率分布
standard transformer: d=512=64
8
ViT: 768x(196+1)xbatch
GPT1: 768x512x64 输入维度 x token数量 x batch

4.无监督的预训练阶段
在这里插入图片描述
模型首先接收输入文本的前k-1个单词,然后生成第k个单词的概率分布,选取概率最高的单词作为预测结果,并将其添加到输入序列的末尾,不断重复,直到生成整个文本序列为止。
优化最大似然函数目标函数,序列的条件概率

5.有监督的微调阶段
在这里插入图片描述
在fine-tuning阶段,在GPT的输出层之上添加额外的结构Wy,例如分类器、解码器等,以适应不同的任务需求。
输入m个token,transformer最终的特征向量hl,经过Wy如线性变换,softmax得到概率分布

6.辅助训练
如上面L3 loss中引入0.5倍的L1 loss一起训练
辅助训练目标帮助模型在微调时拥有更好的泛化能力并加速收敛。
在使用最后一个词的预测结果进行监督学习的同时,前面的词继续上一步的无监督训练
添加辅助的无监督训练目标是半监督学习的另一种形式。

7.四种语言理解任务评估GPT方法
1.文本分类 2.自然语言推理 3.语义相似性 4.问题回答
因为GPT预训练阶段是在连续文本序列上训练的,而NLP大多任务是结构化输入,需要将结构化输入转为序列输入,同时对模型结构更改最小。
结构化文本,使用遍历式的方法,将结构化的输入转换为预训练的模型可以处理的有序序列。
问答、文本蕴含等,有结构化的输入,比如句子对(二元组)、文档问题答案(三元组)。
在这里插入图片描述
(1)文本分类
起始和终止token加入到原始序列两端,transformer得到特征向量+全连接得到预测的概率分布
(2)文本蕴含
通过分隔符delimiter分开,两端加入start和extract token,transformer得到特征向量+全连接得到预测的概率分布
(3)文本相似性
两个句子,输入顺序更换后,经过transformer相加,得到transformer特征向量,拼接后,全连接得到预测结果
(4)问答和常识推理
给定上下文文档z 、一个问题q 和一组可能的答案 ak
[context:z;q;answer1:a1]
N个answer每个对应softmax之后的概率值,投票选取最佳答案。

8.实验
(1)transformer层数影响:
在这里插入图片描述
在使用预训练模型进行下游任务的时候,可以选择将整个预训练模型或其中一部分复制到下游任务的神经网络中。复制的层数可以根据下游任务的大小和复杂度进行调整。
每一个transformer layer都提供了高达9%的迁移效果在multiNLI上面。这表明训练模型中的每一层都包含了解决目标任务的有用功能。
(2)Zero-shot Behaviors零样本行为:不进行监督微调,直接执行四个task
在这里插入图片描述
为什么Transformer的语言模型预训练是有效的?
第一,基础生成模型学会执行我们评估的许多任务,提高了其语言建模能力。即本身学会各个任务都学会了点皮毛。
第二,与LSTM相比,transformer更有结构化的注意力机制,可以更好更长范围捕捉单词之间的关系,有助于模型迁移到下游任务中。
表明生成式预训练支持学习各种与任务相关的功能。

9.总结
(1)生成式预训练+判别性微调=强大自然语言理解的框架,该框架使用单一的任务不可知模型。
(2)包含大段连续文本的多样语料库上进行预训练,获取显著的世界知识和处理长距离依赖关系的能力,成功地将这些能力转移到解决判别性任务,改进了问答、语义相似性评估、蕴涵判断和文本分类研究的12个数据集中的9个的最新技术水平
(3)提供了关于哪些模型(Transformers)和数据集(具有长距离依赖关系的文本)在这种方法中表现最佳的线索。
我们希望这将有助于推动无监督学习的新研究,不仅适用于自然语言理解,还适用于其他领域,进一步提高我们对无监督学习如何以及何时起作用的理解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/951469.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

sql server cdc漏扫数据

SQL Server的CDC指的是“变更数据捕获”(Change Data Capture)。这是SQL Server数据库提供的一项功能,能够跟踪并记录对数据库表中数据所做的更改。这些更改包括插入、更新和删除操作。CDC可以捕获这些变更的详细信息,并使这些信息…

如何在 Ubuntu 22.04 上安装 Caddy Web 服务器教程

简介 Caddy 是一个开源的 Web 服务器,它支持静态和现代 Web 应用程序,使用预定义的配置规则,并为所有链接的域名自动启用 HTTPS。Caddy 使用 GO 语言编写,提供了用户友好的配置指令,使你既可以将其用作 Web 服务器&am…

《机器学习》——贝叶斯算法

贝叶斯简介 贝叶斯公式,又称贝叶斯定理、贝叶斯法则,最初是用来描述两个事件的条件概率间的关系的公式,后来被人们发现具有很深刻的实际意义和应用价值。该公式的实际内涵是,支持某项属性的事件发生得愈多,则该属性成…

边缘计算网关在机床设备数据采集中的应用

边缘计算网关是连接边缘设备和云端的一个中间节点,负责在边缘设备和云服务器之间进行数据传输和处理。它具备数据采集、数据处理、协议转换、数据存储、安全功能及远程管理等多种能力,是边缘计算系统中不可或缺的关键设备。 一、功能与优势 数据采集&a…

腾讯二面:MySQL的半同步是什么?不是MySQL的两阶段提交,那是什么?

前言 年后在进行腾讯二面的时候,写完算法的后问的第一个问题就是,MySQL的半同步是什么?我当时直接懵了,我以为是问的MySQL的两阶段提交的问题呢?结果确认了一下后不是两阶段提交,然后面试官看我连问的是啥都…

云计算基础,虚拟化原理

文章目录 一、虚拟化1.1 什么是虚拟化1.2 虚拟化类型 二 、存储虚拟化2.1 存储指标2.2 存储类型2.3 存储协议2.4 RAID 三、内存 i/O虚拟化3.1 内存虚拟化基本概念地址空间转换原理内存共享与隔离原理 3.2 I/O 虚拟化基本概念模拟(Emulation)方式半虚拟化…

【网络协议】IPv4 地址分配 - 第二部分

前言 在第 1 部分中,我们学习了 IPv4 地址的分配方式,了解了各种类型的 IPv4 地址,并进行了基础的子网划分(Subnetting)。在第 2 部分中,我们将继续学习子网划分,并引入一些新的概念。 【网络…

JAVA 使用apache poi实现EXCEL文件的输出;apache poi实现标题行的第一个字符为红色;EXCEL设置某几个字符为别的颜色

设置输出文件的列宽,防止文件过于丑陋 Sheet sheet workbook.createSheet(FileConstants.ERROR_FILE_SHEET_NAME); sheet.setColumnWidth(0, 40 * 256); sheet.setColumnWidth(1, 20 * 256); sheet.setColumnWidth(2, 20 * 256); sheet.setColumnWidth(3, 20 * 25…

Cursor 实战技巧:好用的提示词插件Cursor Rules

你好啊,见字如面。感谢阅读,期待我们下一次的相遇。 最近在小红书发现了有人分享这款Cursor提示词的插件,下面给各位分享下使用教程。简单来说Cursor Rules就是可以为每一个我们自己的项目去配置一个系统级别的提示词,这样在我们…

【简博士统计学习方法】第1章:3. 统计学习方法的三要素

3. 统计学习方法的三要素 3.1 监督学习的三要素 3.1.1 模型 假设空间(Hypothesis Space):所有可能的条件概率分布或决策函数,用 F \mathcal{F} F表示。 若定义为决策函数的集合: F { f ∣ Y f ( X ) } \mathcal{F…

60.在 Vue 3 中使用 OpenLayers 绘制自由线段、自由多边形

前言 在现代 Web 开发中,地图功能已经成为许多应用的重要组成部分。OpenLayers 是一个强大的开源地图库,支持多种地图源和地图操作。结合 Vue 3 的响应式特性,我们可以轻松实现地图的交互功能。本文将详细介绍如何在 Vue 3 中使用 OpenLayer…

krpano 实现文字热点中的三角形和竖杆

krpano 实现文字热点中的三角形和竖杆 实现文字热点中的三角形和竖杆 一个后端写前端真的是脑阔疼 一个后端写前端真的是脑阔疼 一个后端写前端真的是脑阔疼 实现文字热点中的三角形和竖杆 上图看效果 v:2549789059

【算法】字符串算法技巧系列

阿华代码,不是逆风,就是我疯 你们的点赞收藏是我前进最大的动力!! 希望本文内容能够帮助到你!! 目录 引入:字符串相关算法技巧 1:字符串转数组 2:子字符串 3&#xff…

Linux x86_64 程序静态链接之重定位

文章目录 一、简介二、链接器2.1 简介2.2 可重定位目标模块2.3 符号解析2.4 重定位 三、重定位 demo 演示3.1 外部函数重定位3.2 static 函数重定位 四、补充参考链接 一、简介 编程的代码无非是由函数和各种变量,以及对这些变量的读、写所组成,而不管是…

【OJ刷题】同向双指针问题

这里是阿川的博客,祝您变得更强 ✨ 个人主页:在线OJ的阿川 💖文章专栏:OJ刷题入门到进阶 🌏代码仓库: 写在开头 现在您看到的是我的结论或想法,但在这背后凝结了大量的思考、经验和讨论 目录 1…

ImportError: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.32‘ not found

问题描述:安装MMYOLO或者MMROTATE时,出现的问题: (base) rootautodl-container-78fc438fda-4132d99a:~/autodl-tmp/MMROTATE_PROJECT/mmrotate-1.x# python demo/image_demo.py demo/demo.jpg oriented-rcnn-le90_r50_fpn_1x_dota.py orient…

微信小程序防止重复点击事件

直接写在app.wpy里面,全局可以调用 // 防止重复点击事件preventActive(fn) {const self this;if (this.globalData.PageActive) {this.globalData.PageActive false;if (fn) fn();setTimeout(() > {self.globalData.PageActive true;}, 3000); //设置该时间内…

互联网架构变迁:从 TCP/IP “呼叫” 到 NDN “内容分发” 的逐浪之旅

本文将给出关于互联网架构演进的一个不同视角。回顾一下互联网的核心理论基础产生的背景: 左边是典型的集中控制通信网络,很容易被摧毁,而右边的网络则没有单点问题,换句话说它很难被全部摧毁,与此同时,分…

css出现边框

前言 正常情况下,开启 contenteditable 属性后会出现 “黑色边框”。 如下图所示,很影响美观: 您可能想去掉它,就像下面这样: 解决方案 通过选择器,将 focus 聚焦时移除 outline 属性即可。 如下代码所示&a…

《机器学习》——随机森林

文章目录 什么是随机森林?随机森林的原理随机森林的优缺点优点缺点 随机森林模型API主要参数 实例实例步骤导入数据处理数据,切分数据构建模型训练模型测试数据并输出分类报告和混淆矩阵画出模型的前十重要性的特征 扩展 什么是随机森林? -随…