1. 中介效应 SPSS 实现
本例研究的自变量(X) “工作不被认同”;中介变量(M)为“焦虑”,因变量(Y)为“工作绩效”。探讨焦虑是否在工作不被认同与工作绩效间的作用。
(2)分析一回归一线性,如图所示,将工作绩效放入“因变量”框,工作不被认同放入“块(B)”,方法选择“输入法”,点击“确定”运行。
2. 调节效应 SPSS 实现(X与M均为分类变量)
1.探讨不同性别下,工种和工资的关系
2.探讨不同性别下,工龄和工资的关系
3.探讨不同工龄下,工种和工资的关系
4.探讨不同工龄下,每天工时和工资的关系
分析结果见图,可见性格 (character) 和性别(gender)对得分均有作用,但性格与性别之间没有交互作用,即没有调节作用。
3. 调节效应 SPSS 实现(M为分类变量,X为连续变量)
某研究者研究胸围对肺呼量的影响,考虑到性别可能会起到调节作用,数据见图。
结果解读
(1)模型验证分析结果见图23-15,可见男生组和女生组的回归模型都是有意义的。
F男=102.889,P=0.000,F女=6.974,P=0.009。
(2) 模型方程结果见图23-16,根据男生、女生胸围的回归系数的t检验结果,发现回归系数均是有意义的。然后需要对2个回归系数进行假设检验,但SPSS 不能直接对2个回归系数进行检验,但可以计算其各自的95%可信区间。发现男生胸围回归系数的 95%CI: 47.802~70.814;女生胸围回归系数的95%CI:2.656~18.204,两个95%可信区间之间没有重合,或者说完全分离,因此,2个回归系数之间差异有统计学意义。
进一步说明性别会调节胸围对肺呼量的作用。
4 调节效应 SPSS 实现(M为连续变量,X为分类或者连续变量)
有研究者研究胸围对肺呼量的影响,考虑到身高可能对其产生调节作用,数据见图。
如果已有数据想更新
(1)模型R方,由图23-21可知模型2的R方0.574比模型1的R方0.548多出0.026,这就是 R方变化量,P=0.000<0.05,因此R方变化量是有意义的。
(2)方程检验,由图23-22可知,2个模型P均为0.000,小于0.05,因此2个模型皆有统计学意义。
(3) 方程系数,由图23-23可知XM(即胸围x身高)的回归系数为2.059,t=5.988, P=0.000<0.05,因此XM回归系数是有意义的,即意味着身高对胸围与肺呼量间的作用存在着调节作用。
5 Process 插件安装
http://afhayes.com/index.html
无法访问
可以在百度网盘下载
6 Process 分析中介效应
由图23-34可知
1.X和Y的总效应为 0.8042,95%CI: 0.7266~0.8819,P=0.000<0.05,因此X-Y总效应有统计学意义。
2.X对Y的直接效应 0.6695,95%CI:0.5805~0.7586,P=0.000<0.05,因此X对Y存在直接效应。
3.X对Y的间接效应为 0.1347,95%CI:0.0806~0.1950。
因此本例焦虑对工作不被认同对工作绩效的影响模型为间接中介模型。
如果本例直接效应无统计学意义,那么就是完全中介模型。
后面B部分告诉我们采用的是95% 可信区间进行了5000次自抽样计算。
A
B
7 Process 分析调节效应
报错:
变量名超过8个字符
解决方案:
1.缩短变量名
2.在PROCESS中勾选同意长变量名进行分析的选项
(1) 模型一般情况,图23-39告诉我们Y、X和 如何定义的,以及590样本量。
(2) 模型结果,图23-40(A)部分为模型摘要,R-sg(R方)=0.6546,P=0.000<0.05,因此建立的模型是有意义的。
23-40(B)部分为构建的具体的模型,其中 int_1为胸围与性别的交互项,系数为-48.8777,P=0.000<0.05,说明存在交互作用,意味着调节效应存在。
23-40(C)部分为交互项的R方改变量值为0.0291,P=0.000<0.05,因此,增加交互项,确实能改变模型的效能,也再次证实调节效应存在。
(3)分层分析结果,如图23-41所示,按照性别分层,得到分别在男生和女生中,胸围都影响肺呼量。
知识拓展
排除R、SAS软件,以SPSS系列分析为例,中介效应和调节效应可以采用SPSS实现、Process 实现以及 AMOS 实现;
Process 可以完全替代SPSS的中介和调节效应分析,但和SPSS一样,均只能进行显变量分析,无法进行潜变量的分析;
AMOS 可以实现潜变量与显变量的中介效应与调节效应,中介效应上比 Process 做得好;
但对于显变量的调节效应,Process 优于 AMOS。
参考资料:武松《SPSS实战与统计思维》