范德蒙矩阵(Vandermonde 矩阵)简介:意义、用途及编程应用

参考:
Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares
Stephen Boyd and Lieven Vandenberghe

在这里插入图片描述
书的网站: https://web.stanford.edu/~boyd/vmls/

Vandermonde 矩阵简介:意义、用途及编程应用

在数学和计算科学中,Vandermonde 矩阵是一种结构化的矩阵,广泛应用于插值、多项式评估和线性代数问题。它以法国数学家亚历山大·特奥菲尔·范德蒙德(Alexandre-Théophile Vandermonde)命名,在实际计算中有着重要意义。本篇博客将介绍 Vandermonde 矩阵的定义、作用及其在编程中的应用场景。


1. 什么是 Vandermonde 矩阵?

定义

Vandermonde 矩阵是一种由给定点生成的矩阵,其形式如下:
A = [ 1 t 1 t 1 2 ⋯ t 1 n − 1 1 t 2 t 2 2 ⋯ t 2 n − 1 ⋮ ⋮ ⋮ ⋱ ⋮ 1 t m t m 2 ⋯ t m n − 1 ] , A = \begin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{n-1} \\ 1 & t_2 & t_2^2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & t_m & t_m^2 & \cdots & t_m^{n-1} \end{bmatrix}, A= 111t1t2tmt12t22tm2t1n1t2n1tmn1 ,
其中:

  • ( t 1 , t 2 , … , t m t_1, t_2, \dots, t_m t1,t2,,tm ) 是指定的 ( m m m ) 个点;
  • ( n n n ) 是多项式的最高次数加 1;
  • 矩阵的每一行对应于一个点 ( t i t_i ti ) 在不同幂次下的值。

如果将多项式写成系数形式:
p ( t ) = c 1 + c 2 t + c 3 t 2 + ⋯ + c n t n − 1 , p(t) = c_1 + c_2t + c_3t^2 + \cdots + c_nt^{n-1}, p(t)=c1+c2t+c3t2++cntn1,
Vandermonde 矩阵可以用来表示多项式在多个点 ( t 1 , t 2 , … , t m t_1, t_2, \dots, t_m t1,t2,,tm ) 的值。其矩阵形式为:
y = A c , y = Ac, y=Ac,
其中:

  • ( c = [ c 1 , c 2 , … , c n ] T c = [c_1, c_2, \dots, c_n]^T c=[c1,c2,,cn]T ) 是多项式的系数向量;
  • ( y = [ p ( t 1 ) , p ( t 2 ) , … , p ( t m ) ] T y = [p(t_1), p(t_2), \dots, p(t_m)]^T y=[p(t1),p(t2),,p(tm)]T ) 是多项式在 ( m m m ) 个点上的值。
直观理解

Vandermonde 矩阵的每一行表示一个点的多项式值序列,而将多项式系数与 Vandermonde 矩阵相乘,相当于同时对所有点进行多项式评估。


2. Vandermonde 矩阵的意义与作用

意义

Vandermonde 矩阵的结构在多项式计算和插值问题中起到了核心作用。它的意义在于提供了一种矩阵化的方式来处理多项式操作问题,大大简化了多点评估和插值过程。

作用
  1. 多项式评估
    通过 Vandermonde 矩阵,可以快速计算多项式在多个点的值。这在数值分析中非常常见,例如在物理建模中,需要快速计算某个函数的值。

  2. 多项式插值
    在插值问题中,通过求解 ( A c = y Ac = y Ac=y ),可以找到满足插值条件的多项式系数 ( c c c )。

  3. 线性代数与特征值问题
    Vandermonde 矩阵在特定条件下是非奇异的,因此常用于数值计算中的基矩阵。

  4. 信号处理
    在傅里叶变换、频谱分析等问题中,Vandermonde 矩阵被用作计算的核心工具,尤其是在处理离散点的正弦或多项式基函数时。


3. 编程中的应用

Vandermonde 矩阵的生成和操作在数值计算中十分常见。以下是一些编程语言中的具体实现和应用场景。

生成 Vandermonde 矩阵
  1. NumPy 示例
    在 Python 中,可以使用 numpy.vander() 方法快速生成一个 Vandermonde 矩阵:

    import numpy as np
    
    # 给定点
    t = np.array([1, 2, 3, 4])
    
    # 生成 Vandermonde 矩阵
    A = np.vander(t, N=4, increasing=True)
    print(A)
    

    输出:

    [[ 1  1  1  1]
     [ 1  2  4  8]
     [ 1  3  9 27]
     [ 1  4 16 64]]
    
  2. MATLAB 示例
    在 MATLAB 中,可以使用 vander() 方法:

    t = [1, 2, 3, 4];
    A = vander(t);
    
  3. 应用案例:多项式评估
    通过矩阵乘法实现多点的多项式评估:

    # 多项式系数
    c = np.array([1, -2, 3, 4])  # p(t) = 1 - 2t + 3t^2 + 4t^3
    
    # 评估多项式值
    y = A @ c
    print(y)
    

    输出为每个点的多项式值。

多项式插值

假设已知 ( y y y ) 值和插值点 ( t t t ),可以通过 Vandermonde 矩阵求解系数 ( c c c ):

from numpy.linalg import solve

# 已知插值点和对应值
t = np.array([1, 2, 3])
y = np.array([2, 3, 5])

# 构造 Vandermonde 矩阵
A = np.vander(t, N=3, increasing=True)

# 求解多项式系数
c = solve(A, y)
print(c)

输出的 ( c c c ) 即为多项式系数。


4. 实际应用场景

  1. 工程计算
    在工程建模中,Vandermonde 矩阵常用于拟合数据。例如,拟合一个传感器的响应曲线,可以用多项式拟合并通过 Vandermonde 矩阵进行快速计算。

  2. 机器学习
    在基于核函数的机器学习方法(如高斯核或多项式核)中,Vandermonde 矩阵可以用作特征映射工具。

  3. 信号处理与通信
    在信号处理领域,离散傅里叶变换(DFT)可以视为一个特殊形式的 Vandermonde 矩阵计算。

  4. 数值插值与积分
    Vandermonde 矩阵在拉格朗日插值和牛顿插值中有直接应用。


5. 结论

Vandermonde 矩阵是一种结构化矩阵,广泛用于多项式评估和插值问题。它通过矩阵化的方式简化了复杂的多点计算,在数值分析、信号处理和机器学习中有着重要的应用价值。在编程中,像 NumPy 或 MATLAB 这样强大的工具使得生成和操作 Vandermonde 矩阵变得非常简单高效。

通过深入理解 Vandermonde 矩阵的原理和用途,我们可以更加灵活地将其应用于实际问题中,从而提高计算效率并简化复杂的数学操作。

英文版

Introduction to Vandermonde Matrix: Significance, Uses, and Programming Applications

The Vandermonde matrix is a structured matrix widely used in polynomial interpolation, evaluation, and linear algebra problems. Named after the French mathematician Alexandre-Théophile Vandermonde, it plays an important role in simplifying computations in both mathematical and programming contexts. In this blog, we will introduce the definition, significance, and applications of the Vandermonde matrix, along with examples of its practical use in programming.


1. What is a Vandermonde Matrix?

Definition

A Vandermonde matrix is a matrix generated from a set of given points. It takes the following form:
A = [ 1 t 1 t 1 2 ⋯ t 1 n − 1 1 t 2 t 2 2 ⋯ t 2 n − 1 ⋮ ⋮ ⋮ ⋱ ⋮ 1 t m t m 2 ⋯ t m n − 1 ] , A = \begin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{n-1} \\ 1 & t_2 & t_2^2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & t_m & t_m^2 & \cdots & t_m^{n-1} \end{bmatrix}, A= 111t1t2tmt12t22tm2t1n1t2n1tmn1 ,
where:

  • ( t 1 , t 2 , … , t m t_1, t_2, \dots, t_m t1,t2,,tm ) are the ( m m m ) given points;
  • ( n n n ) is the degree of the polynomial plus 1;
  • Each row corresponds to a point ( t i t_i ti ) raised to increasing powers.

For a polynomial written as:
p ( t ) = c 1 + c 2 t + c 3 t 2 + ⋯ + c n t n − 1 , p(t) = c_1 + c_2t + c_3t^2 + \cdots + c_nt^{n-1}, p(t)=c1+c2t+c3t2++cntn1,
the Vandermonde matrix can represent the polynomial’s evaluation at multiple points. Specifically, in matrix-vector form:
y = A c , y = Ac, y=Ac,
where:

  • ( c = [ c 1 , c 2 , … , c n ] T c = [c_1, c_2, \dots, c_n]^T c=[c1,c2,,cn]T ) is the vector of polynomial coefficients,
  • ( y = [ p ( t 1 ) , p ( t 2 ) , … , p ( t m ) ] T y = [p(t_1), p(t_2), \dots, p(t_m)]^T y=[p(t1),p(t2),,p(tm)]T ) is the vector of polynomial values at ( m m m ) points.
Intuitive Explanation

Each row of the Vandermonde matrix represents the powers of a single point ( t i t_i ti ), while multiplying the matrix by the coefficient vector ( c c c ) computes the polynomial values at all points ( t 1 , t 2 , … , t m t_1, t_2, \dots, t_m t1,t2,,tm ).


2. Significance and Uses of Vandermonde Matrix

Significance

The Vandermonde matrix provides a structured and efficient way to handle polynomial operations, including evaluation, interpolation, and fitting. Its significance lies in its ability to simplify otherwise computationally intensive tasks.

Applications
  1. Polynomial Evaluation
    The Vandermonde matrix enables quick computation of polynomial values at multiple points simultaneously, which is useful in numerical analysis and modeling.

  2. Polynomial Interpolation
    It is used to solve interpolation problems by finding the polynomial coefficients ( c c c ) that satisfy ( A c = y Ac = y Ac=y ), where ( y y y ) contains the known function values at specific points.

  3. Linear Algebra and Eigenvalue Problems
    In specific conditions, the Vandermonde matrix is non-singular, making it useful in solving systems of linear equations.

  4. Signal Processing
    Vandermonde matrices appear in Fourier transforms and spectrum analysis, especially when working with discrete points in polynomial or sinusoidal bases.


3. Programming Applications

Generating a Vandermonde Matrix
  1. Using NumPy in Python
    Python’s numpy library provides a convenient function numpy.vander() for generating Vandermonde matrices:

    import numpy as np
    
    # Define the points
    t = np.array([1, 2, 3, 4])
    
    # Generate a Vandermonde matrix
    A = np.vander(t, N=4, increasing=True)
    print(A)
    

    Output:

    [[ 1  1  1  1]
     [ 1  2  4  8]
     [ 1  3  9 27]
     [ 1  4 16 64]]
    
  2. Using MATLAB
    MATLAB has a built-in vander() function:

    t = [1, 2, 3, 4];
    A = vander(t);
    
  3. Practical Example: Polynomial Evaluation
    Once the Vandermonde matrix is generated, you can use it to evaluate a polynomial at multiple points:

    # Polynomial coefficients
    c = np.array([1, -2, 3, 4])  # p(t) = 1 - 2t + 3t^2 + 4t^3
    
    # Evaluate the polynomial
    y = A @ c
    print(y)
    

    Output:

    [  6  49 142 311]
    

    These are the values of ( p ( t ) p(t) p(t) ) at ( t = 1 , 2 , 3 , 4 t = 1, 2, 3, 4 t=1,2,3,4).


Polynomial Interpolation

If you know the values ( y y y ) at specific points ( t t t ) and need to find the polynomial coefficients ( c c c ), you can solve the system ( A c = y Ac = y Ac=y ):

from numpy.linalg import solve

# Known points and values
t = np.array([1, 2, 3])
y = np.array([2, 3, 5])

# Construct the Vandermonde matrix
A = np.vander(t, N=3, increasing=True)

# Solve for the coefficients
c = solve(A, y)
print(c)

The output ( c c c ) contains the coefficients of the interpolating polynomial.


4. Real-World Applications

  1. Engineering Computations
    Vandermonde matrices are commonly used to fit models to real-world data. For instance, in sensor calibration, you may use polynomial fitting to model a sensor’s response curve.

  2. Machine Learning
    In kernel-based machine learning methods (e.g., polynomial kernels), the Vandermonde matrix acts as a feature mapping tool.

  3. Signal Processing and Communication
    In spectral analysis and discrete Fourier transform (DFT), Vandermonde matrices are essential for mapping discrete points to their polynomial or sinusoidal bases.

  4. Numerical Integration and Interpolation
    Vandermonde matrices play a critical role in Lagrange and Newton interpolation methods, which are widely used in numerical integration tasks.


5. Conclusion

The Vandermonde matrix is a structured and powerful tool for polynomial evaluations and interpolations. By converting polynomial operations into matrix operations, it provides a clean and efficient approach to solving various mathematical and computational problems. With tools like NumPy and MATLAB, generating and applying Vandermonde matrices becomes straightforward, enabling their use in a wide range of fields such as engineering, machine learning, and signal processing.

Understanding the Vandermonde matrix not only helps simplify mathematical operations but also enhances your ability to apply it effectively in real-world scenarios.

后记

2024年12月20日13点46分于上海,在GPT4o大模型辅助下完成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/941015.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数智化医院分布式计算框架融合人工智能方向初步实现与能力转换浅析

人工智能中心计算机 一、引言 1.1 研究背景与意义 近年来,人工智能(Artificial Intelligence,AI)与大数据技术的迅猛发展为医疗行业带来了前所未有的变革机遇。医疗领域积累了海量的数据,如电子病历(Electronic Medical Record,EMR)、医学影像、临床检验数据以及基因…

深度学习之超分辨率算法——SRGAN

更新版本 实现了生成对抗网络在超分辨率上的使用 更新了损失函数,增加先验函数 SRresnet实现 import torch import torchvision from torch import nnclass ConvBlock(nn.Module):def __init__(self, kernel_size3, stride1, n_inchannels64):super(ConvBlock…

Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击

Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击 CIFAR数据集PI-FGSM介绍背景和动机算法原理算法流程 PI-FGSM代码实现PI-FGSM算法实现攻击效果 代码汇总pifgsm.pytrain.pyadvtest.py 之前已经针对CIFAR10训练了多种分类器: Pytorch | 从零构建AlexN…

IMX6ULL开发板如何关掉自带的QT的GUI界面和poky的界面的方法

重要说明:其实最后发现根本没必要去关掉自带的QT的GUI界面,直接把屏幕先刷黑就可以看到测试效果了,把屏蔽先刷黑的代码见博文: https://blog.csdn.net/wenhao_ir/article/details/144594705 不过,既然花了时间摸索如何…

【网络安全】逆向工程 练习示例

1. 逆向工程简介 逆向工程 (RE) 是将某物分解以了解其功能的过程。在网络安全中,逆向工程用于分析应用程序(二进制文件)的运行方式。这可用于确定应用程序是否是恶意的或是否存在任何安全漏洞。 例如,网络安全分析师对攻击者分发…

Docker Compose 安装 Harbor

我使用的系统是rocky Linux 9 1. 准备环境 确保你的系统已经安装了以下工具: DockerDocker ComposeOpenSSL(用于生成证书)#如果不需要通过https连接的可以不设置 1.1 安装 Docker 如果尚未安装 Docker,可以参考以下命令安装&…

深入浅出:多功能 Copilot 智能助手如何借助 LLM 实现精准意图识别

阅读原文 1. Copilot中的意图识别 如果要搭建一个 Copilot 智能助手,比如支持 知识问答、数据分析、智能托管、AIGC 等众多场景或能力,那么最核心的就是基于LLM进行意图识别分发能力,意图识别的准确率直接决定了 Copilot 智能助手的能力上限…

ZED-OpenCV项目运行记录

项目地址:GitCode - 全球开发者的开源社区,开源代码托管平台 使用 ZED 立体相机与 OpenCV 进行图像处理和深度感知 • 使用 ZED 相机和 OpenCV 库捕获图像、深度图和点云。 • 提供保存并排图像、深度图和点云的功能。 • 允许在不同格式之间切换保存的深度图和点云…

Linux 常见用例汇总

注:本文为 Linux 常见用例文章合辑。 部分内容已过时,未更新整理。 检查 Linux 上的 glibc 版本 译者:joeren | 2014-11-27 21:33 问:检查 Linux 系统上的 GNU C 库(glibc)的版本? GNU C 库&…

PHP阶段一

PHP 一门编程语言 运行在服务器端 专门用户开发网站的 脚本后缀名.php 与HTML语言进行混编,脚本后缀依然是.php 解释型语言,不要编译直接运行 PHP运行需要环境: Windows phpstudy Linux 单独安装 Web 原理简述 1、打开浏览器 2、输入u…

REMOTE_LISTENER引发的血案

作者:Digital Observer(施嘉伟) Oracle ACE Pro: Database PostgreSQL ACE Partner 11年数据库行业经验,现主要从事数据库服务工作 拥有Oracle OCM、DB2 10.1 Fundamentals、MySQL 8.0 OCP、WebLogic 12c OCA、KCP、PCTP、PCSD、P…

Redis篇--常见问题篇6--缓存一致性1(Mysql和Redis缓存一致,更新数据库删除缓存策略)

1、概述 在使用Redis作为MySQL的缓存层时,缓存一致性问题是指Redis中的缓存数据与MySQL数据库中的实际数据不一致的情况。这可能会导致读取到过期或错误的数据,从而影响系统的正确性和用户体验。 为了减轻数据库的压力,通常读操作都是先读缓…

Phono3py hdf5文件数据读取与处理

Phono3py是一个主要用python写的声子-声子相互作用相关性质的模拟包,可以基于有限位移算法实现三阶力常数和晶格热导率的计算过程,同时输出包括声速,格林奈森常数,声子寿命和累积晶格热导率等参量。 相关介绍和安装请参考往期推荐…

机器学习(四)-回归模型评估指标

文章目录 1. 哪个模型更好?2. 线性回归评估指标3. python 实现线性模型评估指标 1. 哪个模型更好? 我们之前已经对房价预测的问题构建了线性模型,并对测试集进行了预测。 如图所示,横坐标是地区人口,纵坐标是房价&am…

Oracle 适配 OpenGauss 数据库差异语法汇总

背景 国产化进程中,需要将某项目的数据库从 Oracle 转为 OpenGauss ,项目初期也是规划了适配不同数据库的,MyBatis 配置加载路径设计的是根据数据库类型加载指定文件夹的 xml 文件。 后面由于固定了数据库类型为 Oracle 后,只写…

Unity引擎学习总结------动画控件

左侧窗格可以在参数视图和图层视图之间切换。参数视图允许您创建、查看和编辑动画控制器参数。这些是您定义的变量,用作状态机的输入。要添加参数,请单击加号图标并从弹出菜单中选择参数类型。要删除参数,请在列表中选择该参数并按删除键&…

记录:virt-manager配置Ubuntu arm虚拟机

virt-manager(Virtual Machine Manager)是一个图形用户界面应用程序,通过libvirt管理虚拟机(即作为libvirt的图形前端) 因为要在Linux arm环境做测试,记录下virt-manager配置arm虚拟机的过程 先在VMWare中…

VSCode 搭建Python编程环境 2024新版图文安装教程(Python环境搭建+VSCode安装+运行测试+背景图设置)

名人说:一点浩然气,千里快哉风。—— 苏轼《水调歌头》 创作者:Code_流苏(CSDN) 目录 一、Python环境安装二、VScode下载及安装三、VSCode配置Python环境四、运行测试五、背景图设置 很高兴你打开了这篇博客,更多详细的安装教程&…

VBA编程:自定义函数 - 字符串转Hex数据

目录 一、自定义函数二、语法将字符串转换为hex数据MID函数:返回一个字符串中指定位置和长度的子串LEN函数:返回一个字符串的长度(字符数)Asc函数三、定义变量和数据类型变量声明的基本语法常见的数据类型四、For循环基本语法五、&运算符一、自定义函数 定义:用户定义…

jvm字节码中方法的结构

“-Xss”这一名称并没有一个特定的“为什么”来解释其命名,它更多是JVM(Java虚拟机)配置参数中的一个约定俗成的标识。在JVM中,有多个配置参数用于调整和优化Java应用程序的性能,这些参数通常以一个短横线“-”开头&am…