概率论得学习和整理27:关于离散的数组 随机变量数组的均值,方差的求法3种公式,思考和细节。

目录

1 例子1:最典型的,最简单的数组的均值,方差的求法

2 例子1的问题:例子1只是1个特例,而不是普遍情况。

2.1 例子1各种默认假设,导致了求均值和方差的特殊性,特别简单。

2.2 我觉得 加权平均值公式,比平均值的原始公式Σxi/n 更为普适性

2.3 后面引入随机变量,更是解决了部分 无穷数组 求均值,方差的问题 

2.4 学习顺序的错位

2.3 学习内容的缺失

3 对例子1更一般的均值求法:加权平均值的求法

4 用加权法求会不会多此一举?

5  例子2:对于非等概率的数组,用加权法求均值和方差

(例子1毕竟是特例,不如加权求法更普适性)

5.0 非等概率的数组

5.1 针对非等权重的数组,求均值

5.2 针对非等权重的数组,求方差,就必须用权重了

6 从一般性的数组,再到随机变量数组

6.1 什么是随机变量数组

6.2 随机变量的均值计算,均值=数学期望

6.3 随机变量的方差计算

7.4 VAR=E(Xi^2) - E(Xi)^2特殊公式的含义,别用错了

7 例子3: 计算随机变量数组的均值和方差

7.1 丢1次骰子的随机变量和对应概率/权重

7.2 丢2次骰子的随机变量和对应概率/权重

7.3 这2个随机变量的均值,方差的计算


1 例子1:最典型的,最简单的数组的均值,方差的求法

  • 对象:一个数组
  • 均值:Average=ΣXi*/N = sum/ count
  • 离差:(Xi-A)           # 离差,比较的是每个数列里的值与特定值如均值的差!距离差!
  • 离差和:Σ(Xi-A)
  • 离差和:Σ(Xi-A)
  • 离差平方和:Σ(Xi-A)^2
  • 方差:Σ(Xi-A)^2/N

具体到这个例子里

  • Average=21/6=3.5
  • Var= δ^2=2.917

2 例子1的问题:例子1只是1个特例,而不是普遍情况。

2.1 例子1各种默认假设,导致了求均值和方差的特殊性,特别简单。

  • 数组1,2,3,4,5,6 
  • 特殊性1:只有6个数
  • 特殊性2:默认等概率分布
  • 特殊性3:求均值,没引入权重概念,只是直接 /n, 默认了等权重
  • 特殊性4:求方差,也是直接用的/n, 默认了等权重

2.2 我觉得 加权平均值公式,比平均值的原始公式Σxi/n 更为普适性

我觉得 加权平均值,比  Σxi/n 更为普适性

特殊性3:求均值,没引入权重概念,只是直接 /n, 默认了等权重

这个地方我需要详细解释一下

比如1个数组,

1,2,3,4,5,6 ....100, 理论上,全部相加 Σxi/n 也没错,是最底层的计算均值思路和公式

但是

很多时候,我们的数组里,有多个数是重复出现的,

1,2,3,4,5,6,1,2,3,4,5,6,...5,6,100  (可能远大于100)

我们可能需要统计频度数, 频度=权重

从而用加权平均值的计算方法

比如 1*w1+2w2+.....6*w3+100*w100

所以我觉得,加权平均数,是比这种 等权重平均数更一般的情况

即使是1,2,3,4,5,6 ....100, 理论上,全部相加 Σxi/n 也没错 ,也可以强行认为他们的权重相等都是1/n,所以我觉得 加权平均值,比  Σxi/n 更为普适性

2.3 后面引入随机变量,更是解决了部分 无穷数组 求均值,方差的问题 

另外往下引申一下

为什么要有随机变量,那也是因为数组除了重复,有点乱,还可能无穷。对于无穷数组其实不好计算。但是如果从概率的思路,把概率当成权重,其实可以计算无穷数组。

所以,我觉得 随机变量数组---对比 普通数组,是可以部分解决无穷数组的问题的!

即使是一个无穷数组,只要可以知道每个 具体数对于的概率,可以计算均值,方差等!这样就用概率,绕过了无穷计算这个问题!

2.4 学习顺序的错位

  • 其实,我们应该先学习一般规律,再学习
  • 也许教小学生可以这么教,先用特殊好懂的入门。但是即使这样,也应该把一般性的情况要讲,至少明白,这个东西是有很大局限性的。

2.3 学习内容的缺失

  • 更不好的是,完全不学,不了解,一般化的均值,方差的求法
  • 如果只会求这种 硬来的公式
  • 完全不理解 加权平均值的思路,遇到有频度的数据,就无法处理。
  • 甚至后面也无法理解,随机变量的均值的求法。

3 对例子1更一般的均值求法:加权平均值的求法

方法1:  用原始公式求

  • 定义公式求均值:ΣXi / N
  • 定义公式求方差:Σ(Xi -均值)^2 / N

方法2:用加权法求

  • 加权法求均值:ΣXi *Wi
  • 加权法求方差:Σ(Xi -均值)^2 *Wi

可以看到,两种方法的求得均值,方差都相等。

4 用加权法求会不会多此一举?

不会,看下面的例子

5  例子2:对于非等概率的数组,用加权法求均值和方差

(例子1毕竟是特例,不如加权求法更普适性)

5.0 非等概率的数组

  • 还是一个普通数组,但是是 1,1,3,4,5,6 
  • 其中 1出现2次,没有2
  • 可以转化为频度数组,1,3,4,5,6 对应频度分别是2,1,1,1,1

5.1 针对非等权重的数组,求均值

方法1:  用原始公式求

  • 定义公式求均值:ΣXi / N

方法2:用加权法求

  • 加权法求均值:ΣXi *Wi

都好用

比如1的频度为8,就相当于是8个1,即1,1,1,1,1,1,1,1

5.2 针对非等权重的数组,求方差,就必须用权重了

方法1:  用原始公式求

  • 定义公式求方差:Σ(Xi -均值)^2 / N   这样是错误的

方法2:用加权法求

  • 加权法求方差:Σ(Xi -均值)^2 *Wi

只能用加权法求方差了

6 从一般性的数组,再到随机变量数组

6.1 什么是随机变量数组

随机变量数组,就是 频度=权重=概率的,一个特殊数组

随机变量数组,可以应对部分无穷的数组的计算

6.2 随机变量的均值计算,均值=数学期望

方法1:  用原始公式求

  • 定义公式求均值:ΣXi / N

方法2:用加权法求

  • 加权法求均值:ΣXi *Wi
  • 随机变量的数学期望 =均值   ΣXi *Wi =ΣXi *Pi

6.3 随机变量的方差计算

方法1:  用原始公式求(错误,不能这么求)

  • 定义公式求方差:Σ(Xi -均值)^2 / N  ,没办法这么求

方法2:用加权法求

  • 加权法求方差:Σ(Xi -均值)^2 *Wi
  • 实际上,因为Wi =Pi
  • 加权法求方差, 就是随机变量的均值公式:Σ(Xi -均值)^2 *Wi =Σ(Xi -均值)^2 *Pi
  • 公式继续变形
  • :Σ(Xi -均值)^2 *Wi =Σ(Xi -均值)^2 *Pi = E((Xi -均值)^2)= E((Xi -E(X))^2)

方法3:用2个随机变量数组的均值的差的一个变形公式

  • 随机变量的方差:VAR=Σ(Xi -均值)^2 *Pi  (形式上ΣYi*Pi =E(Y))
  • 随机变量的方差:VAR=E((Xi -E(X))^2)
  • 随机变量的方差:VAR=E(Xi^2) - E(Xi)^2
  • 这个可以推导处理出来的

7.4 VAR=E(Xi^2) - E(Xi)^2特殊公式的含义,别用错了

核心意义: 用均值可以计算方差!

知道均值了就能知道方差!

核心意义,用2个数组的均值,可以计算1个数组的方差!

  • 随机变量的方差:VAR=E(Xi^2) - E(Xi)^2
  • step1: 先生成1个新的随机变量数组,Xi^2
  • step2: 计算E(Xi^2)
  • step3: 用老的xi数组,计算E(X) ,再计算E(X)^2
  • step4: 两者相减=方差, VAR=E(Xi^2)- E(X)^2

7 例子3: 计算随机变量数组的均值和方差

7.1 丢1次骰子的随机变量和对应概率/权重

7.2 丢2次骰子的随机变量和对应概率/权重

7.3 这2个随机变量的均值,方差的计算

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/939686.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

初学stm32 --- 时钟配置

目录 stm32时钟系统 时钟源 (1) 2 个外部时钟源: (2)2 个内部时钟源: 锁相环 PLL PLLXTPRE: HSE 分频器作为 PLL 输入 (HSE divider for PLL entry) PLLSRC: PLL 输入时钟源 (PL…

Latex+VsCode+Win10搭建

最近在写论文,overleaf的免费使用次数受限,因此需要使用本地的形式进行编译。 安装TEXLive 下载地址:https://mirror-hk.koddos.net/CTAN/systems/texlive/Images/ 下载完成直接点击iso进行安装操作。 安装LATEX Workshop插件 设置VsCode文…

深度学习之目标检测篇——残差网络与FPN结合

特征金字塔多尺度融合特征金字塔的网络原理 这里是基于resnet网络与Fpn做的结合,主要把resnet中的特征层利用FPN的思想一起结合,实现resnet_fpn。增强目标检测backone的有效性。代码实现如下: import torch from torch import Tensor from c…

Leetcode 面试150题 399.除法求值

系列博客目录 文章目录 系列博客目录题目思路代码 题目 链接 思路 广度优先搜索 我们可以将整个问题建模成一张图:给定图中的一些点(点即变量),以及某些边的权值(权值即两个变量的比值),试…

python实现Excel转图片

目录 使用spire.xls库 使用excel2img库 使用spire.xls库 安装:pip install spire.xls -i https://pypi.tuna.tsinghua.edu.cn/simple 支持选择行和列截图,不好的一点就是商业库,转出来的图片有水印。 from spire.xls import Workbookdef …

hpe服务器更新阵列卡firmware

背景 操作系统:RHEL7.8 hpe服务器经常出现硬盘断开,阵列卡重启问题,导致系统hang住。只能手动硬重启。 I/O error,dev sda smartpqi 0000:5c:00:0: resettiong scsi 1:1:0:1 smartpqi 0000:5c:00:0: reset of scsi 1:1:0:1:…

excel 使用vlook up找出两列中不同的内容

当使用 VLOOKUP 函数时,您可以将其用于比较两列的内容。假设您要比较 A 列和 B 列的内容,并将结果显示在 C 列,您可以在 C1 单元格中输入以下公式: 这个公式将在 B 列中的每个单元格中查找是否存在于 A 列中。如果在 A 列中找不到…

北邮,成电计算机考研怎么选?

#总结结论: 基于当前提供的24考研复录数据,从报考性价比角度,建议25考研的同学优先选择北邮计算机学硕。主要原因是:相比成电,北邮计算机学硕的目标分数更低,录取率更高,而且北邮的地理位置优势明显。对于…

OpenHarmony和OpenVela的技术创新以及两者对比

两款有名的国内开源操作系统,OpenHarmony,OpenVela都非常的优秀。本文对二者的创新进行一个简要的介绍和对比。 一、OpenHarmony OpenHarmony具有诸多有特点的技术突破和重要贡献,以下是一些主要方面: 架构设计创新 分层架构…

C语言——实现找出最高分

问题描述&#xff1a;分别有6名学生的学号、姓名、性别、年龄和考试分数&#xff0c;找出这些学生当中考试成绩最高的学生姓名。 //找出最高分#include<stdio.h>struct student {char stu_num[10]; //学号 char stu_name[10]; //姓名 char sex; //性别 int age; …

Qt Quick:CheckBox 复选框

复选框不止选中和未选中2种状态哦&#xff0c;它还有1种部分选中的状态。这3种状态都是Qt自带的&#xff0c;如果想让复选框有部分选中这个状态&#xff0c;需要将三态属性&#xff08;tristate&#xff09;设为true。 未选中的状态值为0&#xff0c;部分选中是1&#xff0c;选…

Docker常用命令总结~

1、关于镜像 获取镜像 docker pull [image name] [option:tag]AI助手//获取postgres镜像(没有设置镜像版本号则默认获取最新的&#xff0c;使用latest标记) docker pull postgres or docker pull postgres:11.14 列出本地镜像 docker imagesAI助手 指定镜像启动一个容…

贪心算法在背包问题上的运用(Python)

背包问题 有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 这就是典型的背包问题(又称为0-1背包问题),也是具体的、没有经过任何延伸的背包问题模型。 背包问题的传统求解方法较为复杂,现定义有一个可以载重为8kg的背…

大屏开源项目go-view二次开发3----象形柱图控件(C#)

环境搭建参考&#xff1a; 大屏开源项目go-view二次开发1----环境搭建(C#)-CSDN博客 要做的象形柱图控件最终效果如下图&#xff1a; 其实这个控件我前面的文章也介绍过&#xff0c;不过是用wpf做的&#xff0c;链接如下&#xff1a; wpf利用Microsoft.Web.WebView2显示html…

无刷电机的概念

无换向器电机 Brushless Direct Current Motor&#xff0c;BLDC 普通电机的转子就是中间旋转的线圈&#xff0c;定子就是两边的磁铁 和普通有刷相比&#xff0c;转子和定子互换材料。四周是通电的线圈&#xff0c;中间在转的是磁铁 负载工况决定额定电压&#xff0c;没有固定…

SLAAC如何工作?

SLAAC如何工作&#xff1f; IPv6无状态地址自动配置(SLAAC)-常见问题 - 苍然满关中 - 博客园 https://support.huawei.com/enterprise/zh/doc/EDOC1100323788?sectionj00shttps://www.zhihu.com/question/6691553243/answer/57023796400 主机在启动或接口UP后&#xff0c;发…

【机器学习】【集成学习——决策树、随机森林】从零起步:掌握决策树、随机森林与GBDT的机器学习之旅

这里写目录标题 一、引言机器学习中集成学习的重要性 二、决策树 (Decision Tree)2.1 基本概念2.2 组成元素2.3 工作原理分裂准则 2.4 决策树的构建过程2.5 决策树的优缺点&#xff08;1&#xff09;决策树的优点&#xff08;2&#xff09;决策树的缺点&#xff08;3&#xff0…

ubuntu+ros新手笔记(五):初探anaconda+cuda+pytorch

深度学习三件套&#xff1a;初探anacondacudapytorch 系统ubuntu22.04 ros2 humble 1.初探anaconda 1.1 安装 安装过程参照【详细】Ubuntu 下安装 Anaconda 1.2 创建和删除环境 创建新环境 conda create -n your_env_name pythonx.x比如我创建了一个名为“py312“的环境…

Diffusino Policy学习note

Diffusion Policy—基于扩散模型的机器人动作生成策略 - 知乎 建议看看&#xff0c;感觉普通实验室复现不了这种工作。复现了也没有太大扩展的意义。 Diffusion Policy 是监督学习吗 Diffusion Policy 通常被视为一种基于监督学习的方法&#xff0c;但它的实际训练过程可能结…

【Unity功能集】TextureShop纹理工坊(三)图层(下)

项目源码&#xff1a;在终章发布 索引 图层渲染绘画区域图层Shader 编辑器编辑模式新建图层设置当前图层上、下移动图层删除图层图层快照 图层 在PS中&#xff0c;图层的概念贯穿始终&#xff08;了解PS图层&#xff09;&#xff0c;他可以称作PS最基础也是最强大的特性之一。…