神经网络问题之二:梯度爆炸(Gradient Explosion)

        梯度爆炸(Gradient Explosion)是神经网络训练过程中常见的一个问题,它指的是在反向传播过程中,梯度值变得非常大,超出了网络的处理范围,从而导致权重更新变得不稳定甚至不收敛的现象。

一、产生原因

        梯度爆炸问题通常发生在深度神经网络中,是深度神经网络的结构和训练过程中的一些固有特性,特别是当网络的层数较多、网络结构复杂时,或者使用了不合适的激活函数、初始化方法或优化算法时,随着网络层数的增加,梯度在反向传播过程中会逐层累积变化,这种变化可能导致梯度爆炸。

图1 梯度在反向传播过程中会逐层累积

        具体原因包括:

  1. 深层网络:深度神经网络是多层非线性函数的堆砌,整个网络可以视为一个复合的非线性多元函数。在反向传播过程中,需要对这些函数求导,并应用链式法则。当层数较深时,梯度将以指数形式传播,如果接近输出层的激活函数求导后梯度值大于1,那么层数增多时,最终求出的梯度很容易指数级增长,从而产生梯度爆炸。
  2. 不合适的激活函数:某些激活函数(如sigmoid)在输入值过大或过小时,其导数会趋近于0,导致梯度消失;但在某些特定情况下(如输入值处于激活函数的饱和区),其导数也可能变得非常大,从而导致梯度爆炸。
  3. 不恰当的初始化方法:如果网络权重的初始化值过大,那么在反向传播过程中,梯度值可能会因为权重的累积效应而迅速增大,导致梯度爆炸。
  4. 优化算法问题:某些优化算法(如基于梯度的优化算法)在更新权重时,可能会因为步长过大或学习率设置不当而导致梯度爆炸。

示例说明梯度爆炸原因

        1. sigmoid函数何时出现梯度爆炸

        假设有如下图所示深度神经网络,每一层只有一个神经元,激活函数采用sigmoid函数。

图2 单神经元多层神经网络

        前一层的输出和后一层的输入关系如公式所示:

        其中,x是输入,w是权重,b是偏置,\sigma为激活函数sigmoid。

        f_{loss}表示损失函数,C表示损失函数的结果标量(预期结果与实际结果之间的误差)。具体为:

        损失函数计算出误差之后,逐层往回传,对每一层的wb进行梯度更新。而根据某一层权重的梯度\Delta w等于损失函数对该层权重的偏导数某一层偏置的梯度等于损失函数对该层偏置的偏导数,根据链式求导法则,我们可以推导出公式:

        其中,关于“层输出”之间的求导,依如下方式求出:

        不难发现,越接近输入层的梯度,计算时需要连乘的激活函数求导项和权重矩阵转置项就越多,因此,他们的梯度消失/爆炸也就会越明显。

        而sigmoid函数的导数{\sigma}'(x)趋势如图3所示。

图3 sigmoid函数的导数趋势

        可见,{\sigma}'(x)的最大值为1/4,而我们一般会使用标准方法来初始化网络权重,即使用一个均值为0标准差为1的高斯分布。因此,初始化的网络权值w通常(大部分)都小于1,从而有\left | {\sigma}'(z) w\right |\leq \frac{1}{4}。对于2式的链式求导,层数越多,求导结果越小,最终导致梯度消失的情况出现。同时,如果有\left | {\sigma}'(z) w\right |> 1,则会出现梯度爆炸

        2. sigmoid函数出现梯度爆炸的范围

        量化分析梯度爆炸时x的取值范围:因导数最大为0.25,故\left | w \right |>4才可能出现梯度爆炸,按照\left | {\sigma}'(wx+b) w\right |> 1可计算出x的数值变化范围很窄,仅在下面公式范围内,才会出现梯度爆炸。

        最大数值范围也仅仅0.45,当|w|=6.9时出现。因此仅仅在此很窄的范围内会出现梯度爆炸的问题。

、神经网络训练的影响

        梯度爆炸问题对神经网络训练的影响是显著的。当梯度爆炸发生时,网络的权重更新可能会变得异常大,导致网络的参数值迅速膨胀。这可能会导致数值溢出、计算错误和训练失败。此外,梯度爆炸还可能导致模型不稳定,使得训练过程中的损失值出现显著变化。

、解决方法

        为了解决梯度爆炸问题,可以采取以下措施:

  1. 权重衰减(Weight Decay):通过给参数增加L1或L2范数的正则化项来限制参数的取值范围。这有助于防止权重值过大,从而减小梯度爆炸的风险。
  2. 梯度截断(Gradient Clipping):当梯度的模大于一定阈值时,就将它截断成为一个较小的数。这有助于防止梯度值过大而导致的数值溢出和训练失败。
  3. 选择合适的激活函数:避免使用在特定输入范围内导数过大的激活函数。例如,可以选择ReLU及其变体等激活函数,这些函数在输入为正时具有恒定的导数,有助于缓解梯度爆炸问题。
  4. 合理的初始化方法:使用合适的权重初始化方法,如He初始化或Glorot初始化等。这些初始化方法可以根据网络的层数和激活函数的特点来设置权重的初始值,从而减小梯度爆炸的风险。
  5. 调整优化算法参数:合理设置优化算法的学习率、动量等参数。学习率不宜过大,以避免权重更新过快而导致的梯度爆炸;动量参数可以帮助稳定梯度更新过程,提高训练的稳定性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/921264.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

小杨的N字矩阵c++

题目描述 小杨想要构造一个m*m 的 N 字矩阵( m为奇数),这个矩阵的从左上角到右下角的对角线、第1 列和第m 列都 是半角加号 ,其余都是半角减号 - 。例如,一个 5*5 的 N 字矩阵如下: --- -- -- -- --- 请…

2024 年企业中的生成式 AI 现状

2024: The State of Generative AI in the Enterprise - Menlo Ventures 企业 AI 格局正在被实时改写。随着试点(Pilot)让位于生产(Production),我们对 600 名美国企业 IT 决策者进行了调查,以揭示新出现的…

Ubuntu24虚拟机-gnome-boxes

推荐使用gnome-boxes, virtualbox构建失败,multipass需要开启防火墙 sudo apt install gnome-boxes创建完毕~

Haystack 的开源开发 LLM 应用设计框架

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

leetcode 919.完全二叉树插入器

1.题目要求: 完全二叉树 是每一层(除最后一层外)都是完全填充(即,节点数达到最大)的,并且所有的节点都尽可能地集中在左侧。设计一种算法,将一个新节点插入到一棵完全二叉树中,并在…

提升性能测试效率与准确性:深入解析JMeter中的各类定时器

在软件性能测试领域,Apache JMeter是一款广泛使用的开源工具,它允许开发者模拟大量用户对应用程序进行并发访问,从而评估系统的性能和稳定性。在进行性能测试时,合理地设置请求之间的延迟时间对于模拟真实用户行为、避免服务器过载…

Python + 深度学习从 0 到 1(00 / 99)

希望对你有帮助呀!!💜💜 如有更好理解的思路,欢迎大家留言补充 ~ 一起加油叭 💦 欢迎关注、订阅专栏 【深度学习从 0 到 1】谢谢你的支持! ⭐ 什么是深度学习? 人工智能、机器学习与…

亚信安全发布《2024年第三季度网络安全威胁报告》

《亚信安全2024年第三季度网络安全威胁报告》的发布旨在从一个全面的视角解析当前的网络安全威胁环境。此报告通过详尽梳理和总结2024年第三季度的网络攻击威胁,目的是提供一个准确和直观的终端威胁感知。帮助用户更好地识别网络安全风险,并采取有效的防…

ROS机器视觉入门:从基础到人脸识别与目标检测

前言 从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。 颜…

利用c语言详细介绍下选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它是每次选出最小或者最大的元素放在开头或者结尾位置(采用升序的方式),最终完成列表排序的算法。 一、图文介绍 我们还是使用数组【10,5,3…

candence: 非金属化孔制作

非金属化孔制作 以下面这个RJ45接口为例 1、打开pad designer 只需要设置开始、结束层即可。 保存 来直观看下非金属化孔和金属化孔的区别:

用宏实现简单的计算器

大家好,那么经过我们前面几期的学习,我们对宏有了一定的了解,那么我们今天就来试试实现一个简单的加减乘除运算。 我们的思路是使用三目操作符来分别进行加减和乘除的运算,然后用if判断来”进入相关的判断体进而来进行计算。当然…

Postman之newman

系列文章目录 1.Postman之安装及汉化基本使用介绍 2.Postman之变量操作 3.Postman之数据提取 4.Postman之pm.test断言操作 5.Postman之newman Postman之newman 1.基础环境node安装1.1.配置环境变量1.2.安装newman和html报告组件 2.newman运行 newman可以理解为,没有…

用python简单集成一个分词工具

本部分记录如何利用Python进行分词工具集成,集成工具可以实现运行无环境要求,同时也更方便。 该文章主要是记录,知识点不是特别多,欢迎访问个人博客:https://blog.jiumoz.top/archives/fen-ci-gong-ju-ji-cheng 成品展…

CMake + mingw + opencv

由于是在windows下开发,因此下载的是windows版本的安装程序,如图: 下载的是 MSVC 编译的 OpenCV,但由于我一般使用的是JetBrains的开发工具,并且为了方便跨平台,我一般也是使用cmakemingw编译,这…

11.22 校内模拟赛总结

挂分场 复盘 决定尝试一下多放一点时间在前期看题上 T1 发现是模拟;T2 看上去好神秘啊!想了一会一直没什么思路;T3 看上去眼熟,但还是觉得计数很困难;T4 看完发现是数据结构,推了推很快会了树高做法&…

使用 PyTorch-BigGraph 构建和部署大规模图嵌入的完整教程

当涉及到图数据时,复杂性是不可避免的。无论是社交网络中的庞大互联关系、像 Freebase 这样的知识图谱,还是推荐引擎中海量的数据量,处理如此规模的图数据都充满挑战。 尤其是当目标是生成能够准确捕捉这些关系本质的嵌入表示时,…

如何使用Python代码实现给GPU预加热

如何使用Python代码实现给GPU预加热 一、引言二、使用深度学习框架进行预加热2.1 TensorFlow预加热2.2 PyTorch预加热三、使用CUDA进行预加热四、预加热的效果评估与优化五、结论与展望在高性能计算和深度学习领域,GPU(图形处理器)已经成为不可或缺的加速工具。然而,在实际…

Leecode刷题C语言之统计不是特殊数字的数字数量

执行结果:通过 执行用时和内存消耗如下&#xff1a; bool isPrime(int n){if(n<2){return false;}for(int i2;i*i<n;i){if(n%i0){return false;}}return true; } int nonSpecialCount(int l, int r) {int psqrt(l);int q sqrt(r);int len r-l1;for(int i p; i <q;…

影响电阻可靠性的因素

一、影响电阻可靠性的因素&#xff1a; 影响电阻可靠性的因素有温度系数、额定功率&#xff0c;最大工作电压、固有噪声和电压系数 &#xff08;一&#xff09;温度系数 电阻的温度系数表示当温度改变1摄氏度时&#xff0c;电阻阻值的相对变化&#xff0c;单位为ppm/C.电阻温度…