ROS机器视觉入门:从基础到人脸识别与目标检测

前言

从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。

颜色编码格式,图像格式和视频压缩格式

(1)RGB和BGR:这是两种常见的颜色编码格式,分别代表了红、绿、蓝三原色。不同之处在于,RGB按照红、绿、蓝的顺序存储颜色信息,而BGR按照蓝、绿、红的顺序存储。

rgb8图像格式:常用于显示系统,如电视和计算机屏幕。
	RGB值以8 bits表示每种颜色,总共可以表示256×256×256=16777216种颜色。
	例如: (255,0,0) 表示红色,(0,255,0) 表示绿色,(0,0,255) 表示蓝色。
bgr8图像格式:由一些特定的硬件制造商采用,
	软件方面最著名的就是opencv,其默认使用BGR的颜色格式来处理图像。
	与RGB不同, (0,0,255) 在BGR中表示红色,(0,255,0) 仍然表示绿色,(255,0,0) 表示蓝色。

在自动驾驶里,使用rgb8图像格式的图像,一般称为原图,是数据量最大的格式,没有任何压缩。(2)(2)YUV:这是另一种颜色编码方法,与RGB模型不同的是,它将图像信息分解为亮度(Y)和色度(U和V)两部分。这种方式更接近于人类对颜色的感知方式。

Y:代表亮度信息,也就是灰阶值。
U:从色度信号中减去Y得到的蓝色信号的差异值。
V:从色度信号中减去Y得到的红色信号的差异值。

YUV颜色编码主要用在电视系统以及视频编解码标准中,在这些系统中,Y通道信息可以单独使用,这样黑白电视机也能接收和显示信号。而彩色信息则通过U和V两个通道传输,只有彩色电视机才能处理。这样设计兼容了黑白电视和彩色电视。YUV色彩空间相比RGB色彩空间,更加符合人眼对亮度和色彩的敏感度,在视频压缩时,可以按照人眼的敏感度对YUV数据进行压缩,以达到更高的压缩比。由于历史和技术的原因,YUV的标准存在多种,例如YUV 4:4:4、YUV 4:2:2和YUV 4:2:0等,这些主要是针对U和V通道的采样方式不同定义的。采样不同,对应的压缩比也不同。

(3)图像压缩格式

jpeg:Joint Photographic Experts Group,是一种常见的用于静态图像的损失性压缩格式,
	它特别适合于全彩色和灰度图片,被广泛使用。
	通常情况下,JPEG可以提供10:1到20:1的有损压缩比,根据图像质量自由调整。
png: Portable Network Graphics,PNG是一种无损压缩格式,主要使用了DEFLATE算法。
	由于这是无损压缩,所以解压缩图像可以完全恢复原始数据。
	被广泛应用于需要高质量图像的场景,如网页设计、艺术作品等。
bmp:Bitmap,BMP是Windows系统中常用的一种无压缩的位图图像格式,通常会创造出较大的文件。

位图(Bitmap)是一种常见的计算机图形,最小单位是像素,每个像素都包含一定量的信息,如颜色和亮度等。位图图像的一个主要特点就是,在放大查看时,可以看到图像的像素化现象,也就是我们常说的"马赛克"。BMP、JPEG、GIF、PNG等都是常见的位图格式。

(4)H264和H265:这是两个视频压缩格式,也是两种视频编解码标准。以1280*720的摄像头为例,如果是rgb8格式的原图,一帧图像的大小是:

3*1280*720=27648000字节,即2.7648MB

如果是一小时的视频,那将是非常大的数据量,对网络传输,数据存储,都是很大的压力。而H264通过种种帧间操作,可以达到10:1到50:1的压缩比,甚至更高。H265更进一步,压缩比更高,用来解决4K或8K视频的传输。

更具体的原理见:图像编码与 H264 基础知识在自动驾驶领域,图像数据也使用h264格式,主要用于数采和回放,控制数据量。

usb_cam

(1)linux针对摄像头硬件有一套Video for Linux内核驱动框架,对应提供的有命令行工具 v4l2-ctl (Video for Linux 2),可以查看摄像头硬件信息:

ls /dev/video0  //一般video0是笔记本自带摄像头设备文件
v4l2-ctl -d /dev/video0 --all

这里截取了部分关键信息,下面的usb_cam的launch文件将用到:

(2)usb_cam是ros里usb camera的软件包,一般称为ros摄像头驱动,但这是一个应用程序,其调用v4l2并通过ros topic发出图像数据。搞机器视觉,第一步就是要有图。安装并启动usb_cam,查看图像:

sudo apt-get install ros-noetic-usb-cam 
roslaunch usb_cam usb_cam-test.launch
rqt_image_view

usb_cam-test.launch:

<launch>
  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    //指定设备文件名,默认是/dev/video0
    <param name="video_device" value="/dev/video0" />
    // 宽和高分辨率	
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    // 像素编码,可选值:mjpeg,yuyv,uyvy
    <param name="pixel_format" value="yuyv" />
    <param name="color_format" value="yuv422p" />
    // camera坐标系名
    <param name="camera_frame_id" value="usb_cam" />
    // IO通道,可选值:mmap,read,userptr,大数据量信息一般用mmap
    <param name="io_method" value="mmap"/>
  </node>
  <node name="image_view" pkg="image_view" type="image_view" respawn="false" output="screen">
  	// 指定发出的topic名:/usb_cam/image_raw
    <remap from="image" to="/usb_cam/image_raw"/>
    <param name="autosize" value="true" />
  </node>
</launch>

(3)/usb_cam/image_raw的数据结构体:

rostopic info /usb_cam/image_raw
rosmsg show  sensor_msgs/Image

//消息头,每个topic都有
std_msgs/Header header	
  uint32 seq
  time stamp
  // 坐标系名
  string frame_id
// 高和宽分辨率
uint32 height
uint32 width
// 无压缩的图像编码格式,包括rgb8,YUV444
string encoding
// 图像数据的大小端存储模式
uint8 is_bigendian
// 一行图像数据的字节数量,作为步长参数
uint32 step
// 存储图像数据的柔性数组,大小是step*height
uint8[] data

/usb_cam/image_raw内容展示:

(4)/usb_cam/image_raw/compressed的数据结构体:

rostopic info /usb_cam/image_raw/compressed
rosmsg show sensor_msgs/CompressedImage

std_msgs/Header header
  uint32 seq
  time stamp
  string frame_id
// 压缩的图像编码格式,jpeg,png
string format
uint8[] data

/usb_cam/image_raw/compressed内容展示:

摄像头标定

标定引入

(1)Calibration:翻译过来就是校准和标定。(2)摄像头标定:Camera Calibration是计算机视觉中的一种关键技术,其目的是确定摄像头的内部参数(Intrinsic Parameters)和外部参数(Extrinsic Parameters)。

内部参数:包括焦距、主点坐标以及镜头畸变等因素。
	这些参数与相机本身的硬件有关,如镜头和图像传感器等,一般由厂家提供。
外部参数:摄像头相对于环境的位置和方向。
	例如,它可能描述了一个固定摄像头相对于周围环境的姿态或者安装位置。
	以汽车为例,外参包括各个摄像头之间的关系,摄像头与radar,摄像头与lidar的关系。

(3)汽车各种传感器的之间的相对位置和朝向,用3自由度的旋转矩阵和3自由度的平移向量表示,这些外参由整车厂自己标。一般整车下线之后,进入特定的房间,使用静态标靶、定位器的等高精度设备,完成Camera、radar、Lidar等传感器的标定,称之为产线标定,也叫做下线标定。

笔记本摄像头内参标定

这里我们使用标定常用的标靶图形,完成笔记本摄像头的内参标定。usb_cam可以使用内参标定,避免图像畸变。(1)安装标定功能包(ubuntu20.04+noetic)

sudo apt-get install ros-noetic-camera-calibration

(2)创建 robot_vision 软件包,并标定相关文件

cd ~/catkin_ws/src
catkin_create_pkg robot_vision cv_bridge image_transport sensor_msgs std_msgs geometry_msgs message_generation roscpp rospy

cd robot_vision 
mkdir doc launch
touch launch/cameta_calibration.launch

标定靶图片:

cameta_calibration.launch:

<launch>
  // 使用usb_cam包,发出/usb_cam/image_raw图像数据
  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    <param name="video_device" value="/dev/video0" />
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    <param name="pixel_format" value="yuyv" />
    <param name="camera_frame_id" value="usb_cam" />
    <param name="io_method" value="mmap"/>
  </node>
  // 使用标定功能包,完成标定。
  // 参数中,8x6表示横向8个内部角点,竖向有6个
  // square 是每个棋盘格的边长
  // /usb_cam/image_raw是监听的图像topic
  <node
      pkg="camera_calibration"
      type="cameracalibrator.py"
      name="camera_calibration"
      output="screen"
      args="--size 8x6 --square 0.024 image:=/usb_cam/image_raw camera:=/usb_cam"
  />
</launch>

(3)编译并运行

cd ~/catkin_ws/
catkin_make --source src/robot_vision 
source devel/setup.bash
roslaunch robot_vision cameta_calibration.launch

不断晃动,直到COMMIT按键亮起,然后点击,即可生成标定文件,本人的路径为:/home/mm/.ros/camera_info/head_camera.yaml。

opencv和cv_bridge引入

(1)opencv和cv_bridge

安装opencv(ubuntu20.04+noetic):

sudo apt-get install ros-noetic-vision-opencv libopencv-dev python3-opencv

(2)opencv和cv_bridge的简单架构图如下:

根据这个图,在ros里,处理图像的流程一般是:

    # 第一步:使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
	cv_image = cv_bridge.imgmsg_to_cv2(msg, "bgr8")

	# 第二步:使用opencv进行图像处理
	。。。
	
	# 第三步,再将opencv格式额数据转换成ros image格式的数据
	ros_image = cv_bridge.cv2_to_imgmsg(cv_image, "bgr8")

(3)在 上节的robot_vision包里,我们新增一个cv_bridge的小样例,主要功能是在捕捉到的图像上打个蓝色的圆标。

本文不深入讲解opencv,推荐一个资料:W3Cschool - OpenCV教程

cv_bridge_test.py:

#! /usr/bin/env python3
# -*- coding: utf-8 -*-
import rospy
import cv2
from functools import partial
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image

def image_cb(msg, cv_bridge, image_pub):
    # 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
    try:
        cv_image = cv_bridge.imgmsg_to_cv2(msg, "bgr8")
    except CvBridgeError as e:
        print(e)

    # 在opencv的显示窗口中绘制一个圆,作为标记
    # cv_image.shape返回一个元组,包含图像的行数(高度),列数(宽度)和通道数(通常是3个通道:BGR)
    (rows, cols, channels) = cv_image.shape
    # 当图像的宽度和高度都大于60时,才执行画圆标动作
    if cols > 60 and rows > 60:
    	# 在计算机图像处理中,图像的原点(0,0)通常定义为图像的左上角。(60,60)是圆心的坐标。
    	# 30是圆的半径。
    	# (255,0,0)定义了圆的颜色。在OpenCV中,默认的颜色空间是BGR,所以这其实是绘制了一个蓝色的圆。
    	# -1表示填充圆。如果这个值是正数,则代表绘制的圆的线宽;如果是负数,则代表填充该圆。
        cv2.circle(cv_image, (60,60), 30, (255,0,0), -1)

    # 使用Opencv的接口,显示Opencv格式的图像
    cv2.imshow("ycao: opencv image window", cv_image)
    cv2.waitKey(3)

    # 再将opencv格式额数据转换成ros image格式的数据发布
    try:
        image_pub.publish(cv_bridge.cv2_to_imgmsg(cv_image, "bgr8"))
    except CvBridgeError as e:
        print(e)

def main():
    rospy.init_node("cv_bridge_test")
    rospy.loginfo("starting cv_bridge_test node")

    bridge = CvBridge()
    image_pub = rospy.Publisher("/cv_bridge_image", Image, queue_size=1)
    bind_image_cb = partial(image_cb, cv_bridge=bridge, image_pub=image_pub)
	// 订阅/usb_cam/image_raw,然后再回调函数里处理图像,并发布出来
    rospy.Subscriber("/usb_cam/image_raw", Image, bind_image_cb)
    rospy.spin()
    cv2.destroyAllWindows()
if __name__ == "__main__":
    main()

cv_bridge_test.launch

<launch>
  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    <param name="video_device" value="/dev/video0" />
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    <param name="pixel_format" value="yuyv" />
    <param name="camera_frame_id" value="usb_cam" />
    <param name="io_method" value="mmap"/>
  </node>
  <node
      pkg="robot_vision"
      type="cv_bridge_test.py"
      name="cv_bridge_test"
      output="screen"
  />
  <node
      pkg="rqt_image_view"
      type="rqt_image_view"
      name="rqt_image_view"
      output="screen"
  />
</launch>

(4)编译并运行

cd ~/catkin_ws/
catkin_make --source src/robot_vision 
source devel/setup.bash
roslaunch robot_vision cv_bridge_test.launch

总结

本文主要系统介绍了机器视觉处理的外围知识,引入了opencv和cv_bridge,后面几篇文章,我们将用它们继续丰富 robot_vision 软件包。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/921253.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

利用c语言详细介绍下选择排序

选择排序&#xff08;Selection sort&#xff09;是一种简单直观的排序算法。它是每次选出最小或者最大的元素放在开头或者结尾位置&#xff08;采用升序的方式&#xff09;&#xff0c;最终完成列表排序的算法。 一、图文介绍 我们还是使用数组【10&#xff0c;5&#xff0c;3…

candence: 非金属化孔制作

非金属化孔制作 以下面这个RJ45接口为例 1、打开pad designer 只需要设置开始、结束层即可。 保存 来直观看下非金属化孔和金属化孔的区别&#xff1a;

用宏实现简单的计算器

大家好&#xff0c;那么经过我们前面几期的学习&#xff0c;我们对宏有了一定的了解&#xff0c;那么我们今天就来试试实现一个简单的加减乘除运算。 我们的思路是使用三目操作符来分别进行加减和乘除的运算&#xff0c;然后用if判断来”进入相关的判断体进而来进行计算。当然…

Postman之newman

系列文章目录 1.Postman之安装及汉化基本使用介绍 2.Postman之变量操作 3.Postman之数据提取 4.Postman之pm.test断言操作 5.Postman之newman Postman之newman 1.基础环境node安装1.1.配置环境变量1.2.安装newman和html报告组件 2.newman运行 newman可以理解为&#xff0c;没有…

用python简单集成一个分词工具

本部分记录如何利用Python进行分词工具集成&#xff0c;集成工具可以实现运行无环境要求&#xff0c;同时也更方便。 该文章主要是记录&#xff0c;知识点不是特别多&#xff0c;欢迎访问个人博客&#xff1a;https://blog.jiumoz.top/archives/fen-ci-gong-ju-ji-cheng 成品展…

CMake + mingw + opencv

由于是在windows下开发&#xff0c;因此下载的是windows版本的安装程序&#xff0c;如图&#xff1a; 下载的是 MSVC 编译的 OpenCV&#xff0c;但由于我一般使用的是JetBrains的开发工具&#xff0c;并且为了方便跨平台&#xff0c;我一般也是使用cmakemingw编译&#xff0c;这…

11.22 校内模拟赛总结

挂分场 复盘 决定尝试一下多放一点时间在前期看题上 T1 发现是模拟&#xff1b;T2 看上去好神秘啊&#xff01;想了一会一直没什么思路&#xff1b;T3 看上去眼熟&#xff0c;但还是觉得计数很困难&#xff1b;T4 看完发现是数据结构&#xff0c;推了推很快会了树高做法&…

使用 PyTorch-BigGraph 构建和部署大规模图嵌入的完整教程

当涉及到图数据时&#xff0c;复杂性是不可避免的。无论是社交网络中的庞大互联关系、像 Freebase 这样的知识图谱&#xff0c;还是推荐引擎中海量的数据量&#xff0c;处理如此规模的图数据都充满挑战。 尤其是当目标是生成能够准确捕捉这些关系本质的嵌入表示时&#xff0c;…

如何使用Python代码实现给GPU预加热

如何使用Python代码实现给GPU预加热 一、引言二、使用深度学习框架进行预加热2.1 TensorFlow预加热2.2 PyTorch预加热三、使用CUDA进行预加热四、预加热的效果评估与优化五、结论与展望在高性能计算和深度学习领域,GPU(图形处理器)已经成为不可或缺的加速工具。然而,在实际…

Leecode刷题C语言之统计不是特殊数字的数字数量

执行结果:通过 执行用时和内存消耗如下&#xff1a; bool isPrime(int n){if(n<2){return false;}for(int i2;i*i<n;i){if(n%i0){return false;}}return true; } int nonSpecialCount(int l, int r) {int psqrt(l);int q sqrt(r);int len r-l1;for(int i p; i <q;…

影响电阻可靠性的因素

一、影响电阻可靠性的因素&#xff1a; 影响电阻可靠性的因素有温度系数、额定功率&#xff0c;最大工作电压、固有噪声和电压系数 &#xff08;一&#xff09;温度系数 电阻的温度系数表示当温度改变1摄氏度时&#xff0c;电阻阻值的相对变化&#xff0c;单位为ppm/C.电阻温度…

Typora-PicGo-OSS对象存储

Typora-PicGo-对象存储OSS 问题描述&#xff1a; 上次做完Gitee图床配置后&#xff0c;今天发现图床突然不能使用了&#xff0c;直到我查找到Gitee仓库变成私有后才发现做的图床被封禁了当前仓库因涉嫌外链滥用(RAW)&#xff0c;不支持设置为公开仓库&#xff0c;就导致我的笔…

ESP-KeyBoard:基于 ESP32-S3 的三模客制化机械键盘

概述 在这个充满挑战与机遇的数字化时代&#xff0c;键盘已经成为我们日常学习、工作、娱乐生活必不可少的设备。而在众多键盘中&#xff0c;机械键盘&#xff0c;以其独特的触感、清脆的敲击音和经久耐用的特性&#xff0c;已经成为众多游戏玩家和电子工程师的首选。本文将为…

nohup java -jar supporterSys.jar --spring.profiles.active=prod

文章目录 1、ps -ef | grep java2、kill 13713、ps -ef | grep java4、nohup java -jar supporterSys.jar --spring.profiles.activeprod &5、ps -ef | grep java1. 启动方式进程 1371进程 19994 2. 主要区别3. 可能的原因4. 建议 1、ps -ef | grep java rootshipper:~# p…

大公司如何实现打印机共享的?如何对打印机进行管控或者工号登录后进行打印?异地打印机共享的如何实现可以帮助用户在不同地理位置使用同一台打印机完成打印任务?

大公司如何实现打印机共享的&#xff1f;如何对打印机进行管控或者工号登录后进行打印&#xff1f;异地打印机共享的如何实现可以帮助用户在不同地理位置使用同一台打印机完成打印任务&#xff1f; 如果在局域网内&#xff0c;可以不需要进行二次开发&#xff0c;通过对打印机进…

数字反向输出

数字反向输出 C语言代码C 代码Java代码Python代码 &#x1f490;The Begin&#x1f490;点点关注&#xff0c;收藏不迷路&#x1f490; 小明听到广播里的数字后&#xff0c;总喜欢反着念给妈妈听。请聪明的你将小明听到的数字反向输出。 输入 输入为一个整型的四位数n 输出 …

Vue页面不显示也不报错是怎么回事?如何解决?

在使用Vue.js进行前端开发时&#xff0c;有时会遇到一种令人困惑的情况:页面既不显示任何内容&#xff0c;控制台也不报错。这种情况往往让开发者摸不着头脑&#xff0c;但不必过分担心&#xff0c;通过一系列的排查和调试步骤&#xff0c;我们可以找到问题的根源并解决它。 本…

利用 GitHub 和 Hexo 搭建个人博客【保姆教程】

利用 GitHub 和 Hexo 搭建个人博客 利用 GitHub 和 Hexo 搭建个人博客一、前言二、准备工作&#xff08;一&#xff09;安装 Node.js 和 Git&#xff08;二&#xff09;注册 GitHub 账号 三、安装 Hexo&#xff08;一&#xff09;创建博客目录&#xff08;二&#xff09;安装 H…

C#开发基础之借用dotnet CLI命令行参数的设计了解命令行构建用法

前言 在C#开发中&#xff0c;命令行参数是一种重要的机制&#xff0c;用于在程序启动时向应用程序传递配置或指令。无论是构建CLI工具还是配置化启动的桌面程序&#xff0c;掌握命令行参数的用法可以帮助我们设计更灵活的应用程序。 本文将详细介绍C#中命令行参数的基本用法、…

【单元测试】【Android】JUnit 4 和 JUnit 5 的差异记录

背景 Jetbrain IDE 支持生成 Test 类&#xff0c;其中选择JUnit5 和 JUnit&#xff0c;但是感觉这不是标准的单元测试&#xff0c;因为接口命名吧。 差异对比 两者生成的单测API名称同原API&#xff0c;没加test前缀的。使用差异主要表现在&#xff1a; setUp &#xff06; …