视频修复技术和实时在线处理

什么是视频修复?

视频修复技术的目标是填补视频中的缺失部分,使视频内容连贯合理。这项技术在对象移除、视频修复和视频补全等领域有着广泛的应用。传统方法通常需要处理整个视频,导致处理速度慢,难以满足实时处理的需求。

技术发展与挑战?

早期的视频修复技术依赖于从图像的其他区域采样已知纹理来填补缺失内容,这种方法计算量大,难以实现实时处理。随着深度学习技术的发展,特别是卷积神经网络(CNN)、递归神经网络(RNN)和生成对抗网络(GAN)的应用,视频修复的质量得到了显著提升。最近,Transformer模型在视觉任务中表现出色,但在在线和实时视频修复方面仍存在挑战。

研究目标与核心设计?

研究者们最新提出了一个新的视频修复框架,旨在适应在线和实时的要求,同时尽量减少质量损失。该框架的目标是实现每秒超过20帧的修复速度。框架包括三种方法:在线修复、记忆修复和记忆优化修复。

        在线修复:通过自然修改使修复模型适应在线环境,但帧率仍然不足。

        记忆修复:引入记忆机制,保留连续结果以减少计算量,提高了帧率,但修复质量有所下降。

        记忆优化修复:通过双模型协作,一个模型实时修复当前帧,另一个模型对已修复帧进行精细处理,以提高整体质量。

引用论文:Towards Online Real-Time Memory-based Video Inpainting Transformers

模型细节与创新点?

        注意力机制调整:Transformer的注意力机制被调整为仅包含最后一帧的patch,减少了不必要的预测。

        中间结果保存与重用:保存Transformer的中间结果,并在后续预测中重用,将计算复杂度从O(n^2)降低到O(n)。

        双模型协作:两个模型协同工作,一个负责实时修复,另一个负责精细处理,以兼顾实时性和修复质量。

实验

实验设置:

  1. 模型(Backbones):

    • 实验使用了三种最先进的视频修复Transformer模型作为基础模型,即“背骨”模型,分别是:
      • Decoupled Spatial-Temporal Transformer (DSTT)
      • FuseFormer
      • End-to-End Framework for Flow-Guided Video Inpainting (E2FGVI)
  2. 数据集:

    • YouTube-VOS:包含4519个视频,每个视频大约150帧。
    • DAVIS:包含150个视频,每个视频大约120帧。
    • 由于目的是适配现有模型,实验中没有进行额外训练,而是直接使用了预训练模型的权重。
  3. 评估指标:

    • PSNR(峰值信噪比)
    • SSIM(结构相似性)
    • VFID(视频基于Fréchet Inception Distance)
    • Ewarp(光流 warping 误差)
    • 帧率(FPS)

实验结果:

定量结果:

论文中的表1和表2分别展示了在DAVIS和YouTube-VOS数据集上的视频重建任务的结果。

离线模型(Offline)能够使用视频中更远的信息来修复给定帧,因此性能最好。

在线模型(Online)在质量上表现最好,但帧率较低,因为它需要处理整个窗口的帧。

记忆模型(Memory)通过保存中间结果显著提高了帧率,但牺牲了一定的修复质量。

记忆优化模型(Refined)尝试在保持高帧率的同时提高修复质量,通过两个模型并行工作来实现。

模型比较:

通过不同输入大小的质量/速度图(Figure 4)展示了不同模型在不同输入大小下的性能。

基线在线模型在质量上表现最好,记忆基模型帧率最高,而记忆优化模型在两者之间取得了平衡。

时间分析:

Figure 5展示了YouTube-VOS数据集上每个视频帧的平均PSNR和SSIM值,显示了在线模型和记忆优化模型随着视频进展而提高性能的趋势。

定性结果:

Figure 6展示了使用记忆优化模型在DAVIS数据集上进行对象移除任务的一些视觉结果。

消融实验:

表4提供了对记忆优化模型输入组件重要性的消融研究,确认了所有组件对视频修复的帮助,特别是参考帧的重要性。

总结

实验使用了三种基于Transformer的视频修复模型,并在两个广泛使用的视频修复数据集上进行。结果显示,新框架在保持实时处理速度的同时,减少了质量损失。此外,通过消融实验评估了模型中各个组件的重要性,结果表明双模型协作和记忆机制对提高帧率和质量都有积极作用。

这项工作展示了将现有的修复Transformer模型适配到在线和实时标准的可能性,同时减少了质量损失。尽管存在挑战,但这项研究为未来视频修复技术的发展铺平了道路,有望改变我们制作实时内容的方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/920770.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自动化运维-检测Linux服务器CPU、内存、负载、IO读写、机房带宽和服务器类型等信息脚本

前言:以上脚本为今年8月1号发布的,当时是没有任何问题,但现在脚本里网络速度测试py文件获取不了了,测速这块功能目前无法实现,后面我会抽时间来研究,大家如果有建议也可以分享下。 脚本内容: #…

C语言-11-18笔记

1.C语言数据类型 类型存储大小值范围char1 字节-128 到 127 或 0 到 255unsigned char1 字节0 到 255signed char1 字节-128 到 127int2 或 4 字节-32,768 到 32,767 或 -2,147,483,648 到 2,147,483,647unsigned int2 或 4 字节0 到 65,535 或 0 到 4,294,967,295short2 字节…

【HashMap篇】HashMap实现原理|put方法|扩容机制|寻址算法|1.7情况下的多线程死循环问题

目录 一、二叉树、红黑树、散列表简单介绍 1.二叉树 (1)什么是二叉树 (2)什么是二叉搜索树 2.红黑树 (1)什么是红黑树 3.散列表 (1)什么是散列表 (2)…

AI 大模型重塑软件开发的未来

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

idea 配置 leetcode插件 代码模版

开启自定义模版 codeFileName: $!velocityTool.camelCaseName(${question.titleSlug})Code Template: ${question.content} package leetcode.editor.cn; /*** ${question.title}* author lww* since $!velocityTool.date()*/ public class $!velocit…

微软Microsoft有许多耳熟能详的软件?

微软有许多耳熟能详的软件,以下是一些比较有代表性的: 一、软件类 操作系统: Windows 系列:这是微软最为著名且广泛使用的操作系统,如 Windows 10、Windows 11 等。它为全球绝大多数个人电脑提供了操作平台&#xff0c…

Confluence|Confluence报错:连接MySQL数据库失败

报错信息:Problem connecting to your database 解决方案: 增加一个mysql驱动jar包到容器内部 docker cp ./mysql-connector-java-8.0.19.jar confluence:/opt/atlassian/confluence/confluence/WEB-INF/lib/ 作者:Kkoo 链接:ht…

扣子(Coze):构建智能助手并嵌入个人网站的新选择

首发地址(欢迎大家访问):扣子(Coze):构建智能助手并嵌入个人网站的新选择 1. 前言 之前写了一篇关于使用 MaxKB 搭建个人知识库并集成到个人网站的博客; 整个技术路线我觉得还是很好的&#x…

LeetCode - #139 单词拆分

文章目录 前言摘要1. 描述2. 示例3. 答案题解动态规划的思路代码实现代码解析1. **将 wordDict 转换为 Set**2. **初始化 DP 数组**3. **状态转移方程**4. **返回结果** **测试用例**示例 1:示例 2:示例 3: 时间复杂度空间复杂度总结关于我们 前言 本题由于没有合适答案为以往遗…

SpringCloud篇(服务保护 - Sentinel)

目录 一、雪崩问题及解决方案 1. 雪崩问题 2. 解决方案 方案一:超时处理 方案二:仓壁模式 方案三:断路器模式 方案四:限流 3. 总结 二、服务保护技术对比 三、Sentinel介绍与安装 1. 初识Sentinel 2. Sentinel 优势 3…

MACOS开发、使用常见问题汇总

MACOS常见问题 本文记录使用macos遇到的常见问题,后面会持续更新,觉得有用的可以收藏一下。 打不开xxx.app,因为它来自身份不明的开发者解决方法(开启任何来源) 打开终端(Terminal)程序 拷贝sudo spctl --master-di…

网络安全之国际主流网络安全架构模型

目前,国际主流的网络安全架构模型主要有: ● 信息技术咨询公司Gartner的ASA(Adaptive Security Architecture自适应安全架构) ● 美国政府资助的非营利研究机构MITRE的ATT&CK(Adversarial Tactics Techniques &…

Linux下 GDB调试器的使用

文章目录 1. 可执行程序的Debug版和Release版区别一、编译选项与目的二、性能与体积三、功能与特性四、查看可执行文件 2. GDB 相关命令GDB常用命令 1. 可执行程序的Debug版和Release版区别 一、编译选项与目的 Debug版: 编译选项:通常使用包含调试信息…

RN开发搬砖经验之—Layout Inspector看不到 DecorView

最近我发现自己已经很久没有使用Layout Inspector这个工具了。今天,为了深入分析React Native(RN)框架中的一个UI问题,我需要查看RN组件对应的Android原生组件视图层级(View tree)的实际情况。因此&#xf…

go-zero(三) 数据库操作

go-zero 数据库操作 在本篇文章中,我们将实现一个用户注册和登录的服务。我们将为此构建一个简单而高效的 API,包括请求参数和响应参数的定义。 一、Mysql连接 1. 创建数据库和表 在 MySQL 中创建名为 test_zero的数据库,并创建user 表 …

23种设计模式-模板方法(Template Method)设计模式

文章目录 一.什么是模板方法模式?二.模板方法模式的特点三.模板方法模式的结构四.模板方法模式的应用场景五.模板方法模式的优缺点六.模板方法模式的C实现七.模板方法模式的JAVA实现八.代码解析九.总结 类图: 模板方法设计模式类图 一.什么是模板方法模…

uniapp实现开发遇到过的问题(持续更新中....)

1. 在ios模拟器上会出现底部留白的情况 解决方案: 在manifest.json文件,找到开源码视图配置,添加如下: "app-plus" : {"safearea":{"bottom":{"offset" : "none" // 底部安…

Python Matplotlib 安装指南:使用 Miniconda 实现跨 Linux、macOS 和 Windows 平台安装

Python Matplotlib 安装指南:使用 Miniconda 实现跨 Linux、macOS 和 Windows 平台安装 Matplotlib是Python最常用的数据可视化工具之一,结合Miniconda可以轻松管理安装和依赖项。在这篇文章中,我们将详细介绍如何使用Miniconda在Linux、mac…

【element-tiptap】Tiptap编辑器核心概念----结构篇

core-concepts 前言:这篇文章来介绍一下 Tiptap 编辑器的一些核心概念 (一)结构 1、 Schemas 定义文档组成方式。一个文档就是标题、段落以及其他的节点组成的一棵树。 每一个 ProseMirror 的文档都有一个与之相关联的 schema,…

window的wsl(Ubuntu)安装kafka步骤

环境:Win11 WSL(Linux子系统Ubuntu) apache-zookeeper-3.9.3-bin kafka_2.12-3.8.1 思路:apache上分别下载zookeeper和kafka,在wsl环境安装。在kafka上创建消息的topic,发送消息,接受消息,验证是否安…