【机器学习】聚类算法原理详解

聚类算法

性能度量:

  • 外部指标
    • jaccard系数(简称JC
    • FM指数(简称FMI
    • Rand指数(简称RI
  • 内部指标
    • DB指数(简称DBI
    • Dunn指数(简称DI

距离计算:

  • L p L_p Lp 范数
  • 欧氏距离
  • 曼哈顿距离

分类:

  • 原型聚类:k-means算法,学习向量量化(有监督学习),高斯混合聚类 都是此类型算法

假设聚类结构能够通过一组原型刻画,然后对原型进行迭代更新求解。

  • 密度聚类:DBSCAN

  • 层次聚类:AGNES

    试图在不同层次上对数据集进行划分,分为自底向上的聚合策略和自顶向下的分拆策略

聚簇之间的距离的计算:最小距离,最大距离和平均距离(两个簇中样本点对距离之和取平均)

AGNES算法被相应称为:单链接算法(以最小距离为准),全链接算法(以最大距离为准)和均链接算法

以单链接算法为例:

  • 初始时每个样本点看做一个簇,找到所有簇对中最小的距离,将他们合并为一个簇,此时合并的簇与其他簇的距离更新为两个点到其他簇距离的最小值。
  • 上面的步骤为循环里面的步骤,接着进行下一次循环,找到所有簇中最短的距离,然后将他们合并,合并后更新簇之间的距离为【合并簇中的所有点到其他簇距离的最小值】,一直进行上述循环操作,直到达到指定簇的数量再停止循环。

K-MEANS算法

1 概述

聚类概念:这是个无监督问题(没有标签数据),目的是将相似的东西分到一组。

通常使用的算法是K-MEANS算法

K-MEANS算法:

  • 需要指定簇的个数,即K值
  • 质心:数据的均值,即向量各维取平均即可
  • 距离的度量:常用欧几里得距离和余弦相似度(先标准化,让数据基本都是在一个比较小的范围内浮动)
  • 优化目标: m i n ∑ i = 1 K ∑ x ∈ C i d i s t ( c i , x ) 2 min\sum \limits_{i = 1}^K \sum \limits_{x \in C_i} dist(c_i, x)^2 mini=1KxCidist(ci,x)2 (对于每一个簇让每一个样本到中心点的距离越小越好, c i c_i ci代表中心点)

2 K-MEANS流程

假设平面上有一系列样本点,现在需要将其进行分组。

选定K=2,即将这些数据点分成两个组别。

  • 随机选择两个质心(分别代表两个簇),计算所有样本点到两个质心的距离。每个样本点会计算出到两个质心的距离,那么选择最小的距离,这个样本点就归属于哪个簇。
  • 然后对于两个簇的所有样本点分别算出对应的质心(这两个质心便充当新的质心),再对所有样本点计算到两个新的质心的距离,还是选择最小的距离,那么这个样本点就归属于哪个簇。
  • 最终直到两个簇所属的样本点不在发生变化。

K-MEANS工作流程视频参考

3 优缺点

优点:

  • 简单快速,适合常规数据集

缺点:

  • K值难以确定
  • 复杂度与样本呈线性关系
  • 很难发现任意形状的簇
  • 初始的点影响很大

K-MEANS可视化演示

4 K-MEANS进行图像压缩

from skimage import io
from sklearn.cluster import KMeans
import numpy as np

image = io.imread("1.jpg")
io.imshow(image)
# io.show()  # 显示图片

rows = image.shape[0]
cols = image.shape[1]
print(image.shape)

image = image.reshape(rows * cols, 3)
kmeans = KMeans(n_clusters=128, n_init=10, max_iter=100)  # 簇128, 最大迭代次数100
kmeans.fit(image)

clusters = np.asarray(kmeans.cluster_centers_, dtype=np.uint8)
labels = np.asarray(kmeans.labels_, dtype=np.uint8)
labels = labels.reshape(rows, cols)

print(clusters.shape)
np.save('test.npy', clusters)
io.imsave('compressed.jpg', labels)

DBSCAN算法

1 概述

DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度的空间聚类算法。该算法将具有足够密度的区域划分为簇,并在具有噪声的空间数据库中发现任意形状的簇,DBSCAN算法将定义为密度相连的点的最大集合。

核心对象:若某个点的密度达到算法设定的阈值则称其为核心点。(即r邻域内的点的数量不小于minPts

基于以上密度的定义,我们可以将样本集中的点划分为以下三类:

  • 核心点:在半径r区域内,含有超过MinPts数目(最小数目)的点,称为核心点;
  • 边界点:在半径r区域内,点的数量小于MinPts数目,但是是核心点的直接邻居;
  • 噪声点:既不是核心点也不是边界点的点

噪声点是不会被聚类纳入的点,边界点与核心点组成聚类的“簇”。

一些概念:

  • 直接密度可达(密度直达):如果p在q的r领域内,且q是一个核心点对象,则称对象p从对象q出发时直接密度可达,反之不一定成立,即密度直达不满足对称性。
  • 密度可达:如果存在一个对象链q–>e–>a–>k–>l–>p,任意相邻两个对象间都是密度直达的,则称对象p由对象q出发密度可达。密度可达满足传递性。
  • 密度相连:对于 x i x_i xi x j x_j xj ,如果存在核心对象样本 x k x_k xk ,使 x i x_i xi x j x_j xj 均由 x k x_k xk 密度可达,则称 x i x_i xi x j x_j xj 密度相连。密度相连关系满足对称性

核心点能够连通(密度可达),它们构成的以r为半径的圆形邻域相互连接或重叠,这些连通的核心点及其所处的邻域内的全部点构成一个簇。

2 原理

  1. DBSCAN通过检查数据集中每个点的r邻域来搜索簇,如果点p的r邻域包含多于MinPts个点,则创建一个以p为核心对象的簇;
  2. 然后, DBSCAN迭代的聚集从这些核心对象直接密度可达的对象,这个过程可能涉及一些密度可达簇的合并;
  3. 当没有新的带你添加到任何簇时,迭代过程结束。

优缺点:

  • 优点:基于密度定义,可以对抗噪声,能处理任意形状和大小的簇

  • 缺点:当簇的密度变化太大时候,聚类得到的结果会不理想;对于高维问题,密度定义也是一个比较麻烦的问题。

3 实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
import matplotlib.colors

# 创建Figure
fig = plt.figure()
# 用来正常显示中文标签
matplotlib.rcParams['font.sans-serif'] = [u'SimHei']
# 用来正常显示负号
matplotlib.rcParams['axes.unicode_minus'] = False

X1, y1 = datasets.make_circles(n_samples=5000, factor=.6,
                                      noise=.05)
X2, y2 = datasets.make_blobs(n_samples=1000, n_features=2,
                             centers=[[1.2,1.2]], cluster_std=[[.1]],random_state=9)

# 原始点的分布
ax1 = fig.add_subplot(311)
X = np.concatenate((X1, X2))
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.title(u'原始数据分布')
plt.sca(ax1)

# K-means聚类
from sklearn.cluster import KMeans
ax2 = fig.add_subplot(312)
y_pred = KMeans(n_clusters=3, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title(u'K-means聚类')
plt.sca(ax2)

# DBSCAN聚类
from sklearn.cluster import DBSCAN
ax3 = fig.add_subplot(313)
y_pred = DBSCAN(eps = 0.1, min_samples = 10).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title(u'DBSCAN聚类')
plt.sca(ax3)

plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/920868.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前端:HTML (学习笔记)【1】

一,网络编程的三大基石 1,URL (1)url —— 统一资源定位符: 网址——整个互联网中可以唯一且准确的确定一个资源的位置。 【项目外】 网址——https://www.baidu.com/ …

2024年亚太地区数学建模大赛A题-复杂场景下水下图像增强技术的研究

复杂场景下水下图像增强技术的研究 对于海洋勘探来说,清晰、高质量的水下图像是深海地形测量和海底资源调查的关键。然而,在复杂的水下环境中,由于光在水中传播过程中的吸收、散射等现象,导致图像质量下降,导致模糊、…

基于SpringBoot的“广场舞团系统”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“广场舞团系统”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:SpringBoot 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 系统首页界面图 社团界面图 社团活…

视频流媒体播放器EasyPlayer.js无插件直播流媒体音视频播放器Android端webview全屏调用无效问题

流媒体播放器的核心技术与发展趋势正在不断推动着行业的变革。未来,随着技术的不断进步和应用场景的不断拓展,流媒体播放器将为用户带来更加便捷、高效、个性化的观看体验。同时,流媒体播放器也会成为数字娱乐产业的重要组成部分,…

【Python · PyTorch】卷积神经网络 CNN(LeNet-5网络)

【Python PyTorch】卷积神经网络 CNN(LeNet-5网络) 1. LeNet-5网络※ LeNet-5网络结构 2. 读取数据2.1 Torchvision读取数据2.2 MNIST & FashionMNIST 下载解包读取数据 2. Mnist※ 训练 LeNet5 预测分类 3. EMnist※ 训练 LeNet5 预测分类 4. Fash…

Live2D嵌入前端页面

废话不多说,直接看效果,给页面中嵌入的一个动态的二次元人物,美化页面,实际效果自行查看。 教程开始 一. 把项目拉取到本地 项目地址 自行下载到本地,下载方式自行选择。 二.把项目文件夹放到前端页面目录内 三.把下…

openlayer 将 GeoJSON 格式的 geometry 转换为 feature

openlayer 将 GeoJSON 格式的 geometry 转换为 feature geometry格式如图: 代码: /*** 将 GeoJSON 格式的 geometry 转换为 feature* param geometry* returns*/geoJsonToWkt(geometry) {const { coordinates, type } geometry;let olGeometry;swit…

web应用安全和信息泄露预防

文章目录 1:spring actuator导致的信息泄露1.1、Endpoint配置启用检测1.2、信息泄露复现1.3、防御 2:服务端口的合理使用3:弱口令(密码)管理4:服务端攻击4.1、短信业务,文件上传等资源型接口1、…

基于LSTM的新闻中文文本分类——基于textCNN与textRNN

构建词语字典 def build_vocab(file_path, tokenizer, max_size, min_freq):# 定义词汇表字典:使用 vocab_dic {} 初始化一个空字典,用于存储每个词及其出现频率vocab_dic {}with open(file_path, r, encodingUTF-8) as f:for line in tqdm(f):lin l…

MySQL 的 Change Buffer 是什么?它有什么作用?

MySQL 的 Change Buffer 是什么?它有什么作用? MySQL 是目前广泛使用的开源数据库管理系统,其中的 InnoDB 存储引擎凭借其高性能、高可靠性以及强大的事务支持,成为了默认的存储引擎。在 InnoDB 的众多优化机制中,Cha…

Spark 之 Aggregate

Aggregate 参考链接: https://github.com/PZXWHU/SparkSQL-Kernel-Profiling 完整的聚合查询的关键字包括 group by、 cube、 grouping sets 和 rollup 4 种 。 分组语句 group by 后面可以是一个或多个分组表达式( groupingExpressions )…

C#高级:Winform中的自定义窗体输入

目录 一、多样式输入(无封装) 1.代码 2.效果 二、单输入框封装 1.使用 2.封装 3.效果 三、组合框批量输入封装 1.使用 2.封装 3.效果 一、多样式输入(无封装) 1.代码 private async void button1_Click(object send…

使用GDB或Delve对已经运行起来的Go程序进行远程调试

同步发布在我的博客,欢迎来点赞。 使用 GDB 或 Delve 对已经运行起来的 Go 程序进行远程调试 使用 GDB 或 Delve 对已经运行起来的 Go 程序进行远程调试 背景 Java 程序可以很方便地通过 jdwp 参数指定一个对外端口进行远程调试,如 java \ -agentlib…

简单实现QT对象的[json]序列化与反序列化

简单实现QT对象的[json]序列化与反序列化 简介应用场景qt元对象系统思路实现使用方式题外话 简介 众所周知json作为一种轻量级的数据交换格式,在开发中被广泛应用。因此如何方便的将对象数据转为json格式和从json格式中加载数据到对象中就变得尤为重要。 在python类…

Java开发经验——开发常用工具类

摘要 本文介绍了Java开发中常用的工具类,包括Apache Commons Collections的SetUtils、Google Guava的Sets、Apache Commons Lang的ArrayUtils等,以及它们在集合操作、数组操作、字符串处理、JSON处理等方面的应用。文章还涉及了Optional类、Money工具类…

esp32c3开发板通过micropython的mqtt库连MQTT物联网消息服务器

MQTT介绍 MQTT(Message Queuing Telemetry Transport)是一种轻量级的消息协议,旨在设备之间进行通信,尤其是在网络条件较差的情况下。MQTT v3.1.1 和 MQTT v5 是该协议的两个主要版本。 MQTT v3.1.1: 优点&#xff…

【IDE】使用指南

定期更新实用技能,建议关注收藏点赞。 友情链接: 点击跳转常见代码编辑器的报错解决方案 目录 常用快捷键pycharm右下角边栏脚本头安装IDE的插件git配置TODO 代码编辑器里有许多小技巧,便于办公。本篇主要以pycharm,vscode等主流常用IDE为…

OpenGL入门009——漫反射在片段着色器中的应用

本节将在片段着色器中应用漫反射 文章目录 一些概念漫反射 实战简介dependenciesshadervsshader.fs utilsCube.cpp main.cppCMakeLists.txt最终效果 一些概念 漫反射 概述: 描述的是粗糙表面对光的反射,反射的光线相关各个方向均匀分布,与视…

删库跑路,启动!

起因:这是一个悲伤的故事,在抓logcat时 device待机自动回根目录了,而题主对当前路径的印象还停留在文件夹下,不小心在根目录执行了rm -rf * … 所以,这是个悲伤的故事,东西全没了…device也黑屏了&#xff…

Ubuntu下的Eigen库的安装及基本使用教程

一、Eigen库介绍 简介 Eigen [1]目前最新的版本是3.4,除了C标准库以外,不需要任何其他的依赖包。Eigen使用的CMake建立配置文件和单元测试,并自动安装。如果使用Eigen库,只需包特定模块的的头文件即可。 基本功能 Eigen适用范…