1、在pom.xml中加入依赖
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-stream-kafka</artifactId>
<version>3.1.6</version>
</dependency>
2、配置application.yml
加入Kafka的配置
spring
kafka:
#Kafka地址,可以是一个,也可以是Kafka集群的地址,多个地址用逗号分隔
bootstrap-servers: 192.168.57.1xx:9093,192.168.57.1xx:9094,192.168.57.1xx:9095
producer:
# 消息确认模式:0=不等待确认,1=等待leader确认,all=所有副本确认
acks: 1
# 发送失败时的重试次数,0表示不重试
retries: 0
# 批量发送时的批次大小(字节)
batch-size: 30720000 # 30MB
# 生产者的内存缓冲区大小(字节)
buffer-memory: 33554432 # 32MB
# Key的序列化器类
key-serializer: org.apache.kafka.common.serialization.StringSerializer
# Value的序列化器类
value-serializer: org.apache.kafka.common.serialization.StringSerializer
consumer:
# 消费者所属的组ID
group-id: test-kafka
# 禁用自动提交offset,改为手动提交
enable-auto-commit: false
# 偏移量重置策略:
# earliest:从最早的记录开始消费
# latest:从最新的记录开始消费
auto-offset-reset: earliest
# Key的反序列化器类
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
# Value的反序列化器类
value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
# 每次poll()调用返回的最大消息条数
max-poll-records: 2
session:
# 消费者会话超时时间,超时未发送心跳将被认为失联(毫秒)
timeout:
ms: 300000 # 5分钟
listener:
# 如果指定的主题不存在,是否让应用启动失败,false表示不会报错
missing-topics-fatal: false
# 消费模式:single=单条消息,batch=批量消费
type: single
# 消费确认模式:
# manual_immediate:手动确认消息,立即提交offset
ack-mode: manual_immediate
这里的生产者value的序列化器用org.apache.kafka.common.serialization.StringSerializer
,消费者value的序列化器用org.apache.kafka.common.serialization.StringDeserializer即可。
(这里不需要自定义序列化器,但在代码需要将JAVA对象转化为JSON字符串发送)
3、config、producer、consumer代码
3.1、User.java
import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.Data;
import lombok.NoArgsConstructor;
@Data
@Builder
@NoArgsConstructor
@AllArgsConstructor
public class User {
private int id;
private String name;
}
3.2、Task.java
import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.Data;
import lombok.NoArgsConstructor;
@Data
@Builder
@NoArgsConstructor
@AllArgsConstructor
public
class Task {
private int id;
private String description;
private User assignedUser;
}
模拟嵌套类
3.3、KafkaConfig.java
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
@EnableKafka
@Configuration
public class KafkaConfig {
// 单条消费监听器工厂,手动提交offset
@Bean
public ConcurrentKafkaListenerContainerFactory<String, String> singleFactory(
ConsumerFactory<String, String> consumerFactory) {
ConcurrentKafkaListenerContainerFactory<String, String> factory =
new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory);
factory.getContainerProperties().setAckMode(org.springframework.kafka.listener.ContainerProperties.AckMode.MANUAL_IMMEDIATE);
return factory;
}
}
3.4、KafkaProducer.java
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.kafka.core.KafkaTemplate;
@SpringBootApplication
public class KafkaProducer {
public static void main(String[] args) {
SpringApplication.run(KafkaProducer.class, args);
}
@Bean
CommandLineRunner commandLineRunner(KafkaTemplate<String, String> kafkaTemplate) {
return args -> {
String topic = "task-topic";
ObjectMapper objectMapper = new ObjectMapper();
for (int i = 1; i <= 5; i++) {
// 定义一个对象实例
User user = User.builder().id(1).name("Alice").build();
Task task = Task.builder().id(101).description("Complete report").assignedUser(user).build();
//JAVA对象转化为JSON字符串
String message = objectMapper.writeValueAsString(task);
kafkaTemplate.send(topic, message);
System.out.println("Sent: " + message);
Thread.sleep(500); // 模拟消息发送间隔
}
};
}
}
序列化:使用 Jackson 的 ObjectMapper
将 Task
对象转化为 JSON 字符串,方法 writeValueAsString()
将 Java 对象转为 JSON 字符串。
3.5、SingleConsumer.java
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.Acknowledgment;
import org.springframework.stereotype.Service;
@Service
public class SingleConsumer {
@KafkaListener(topics = "task-topic", groupId = "test-group", containerFactory = "singleFactory", autoStartup = "true")
public void listen(ConsumerRecord<String, String> record, Acknowledgment acknowledgment) throws JsonProcessingException {
String message = record.value();
ObjectMapper objectMapper = new ObjectMapper();
Task task = objectMapper.readValue(message,Task.class);
// 取出
System.out.println("User - Received: " + task.getAssignedUser());
// 手动提交offset
acknowledgment.acknowledge();
}
}
反序列化: 使用 ObjectMapper
将 JSON 字符串 message
转换回 Task
对象,方法 readValue()
可以将 JSON 字符串解析为指定的 Java 对象类型。
4、测试
启动KafkaProducer.java
可以解析出JAVA对象中User
成功!