tensorflow案例6--基于VGG16的猫狗识别(准确率99.8%+),以及tqdm、train_on_batch的简介

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

前言

  • 本次还是学习API和如何搭建神经网络为主,这一次用VGG16去对猫狗分类,效果还是很好的,达到了99.8%+

文章目录

  • 1、tqdm、train_on_batch、预测简介
    • tqdm
    • train_on_bacth
      • `train_on_batch` 方法签名
    • 预测需要注意
  • 2、猫狗识别实现
    • 1、数据处理
      • 1、导入库
      • 2、查看数据数量与类别
      • 3、导入数据
      • 4、数据图片展示
      • 5、数据归一化
      • 6、设置内存加速
    • 2、模型构建
    • 3、模型训练
      • 1、超参数设置
      • 2、模型训练
    • 4、结果显示
    • 5、预测

1、tqdm、train_on_batch、预测简介

tqdm

这个是一个修饰API,它展现的是进度条形式,用于显示训练进度,如下:

tqdm(total=train_total, desc=f'Epoch {epoch + 1} / {epochs}', mininterval=1, ncols=100)
  • total:预期迭代数目
  • mininterval:进度条更新的速度
  • ncols:控制条宽度

train_on_bacth

本人首先学的是pytorch,在pytorch中训练模型,比较灵活,需要自己去计算损失函数、去模拟训练过程D等, 但是当我在学tensorflow的时候,发现在tensorflow中,有一个叫做model.fit()的函数,封装的很完善,但是这样对于本人先学pytorch的来说,感觉还是pytorch好用,==而今天这次案例用到了train_on_bacth==

,这个API也像pytorch一样,提供了更多的灵活性,本人更偏爱这种方法,但是还是本人更喜欢pytorch🤠🤠🤠🤠

train_on_batch(self, x, y=None, sample_weight=None, class_weight=None, reset_metrics=True, return_dict=False)

当然!train_on_batch 方法有几个重要的参数,下面是对这些参数的详细解释:

train_on_batch 方法签名

train_on_batch(self, x, y=None, sample_weight=None, class_weight=None, reset_metrics=True, return_dict=False)
  1. x: 输入数据。
    • 类型:可以是 Numpy 数组、列表、字典,或者任何其他类型的数据,具体取决于模型的输入层。
    • 描述:这是模型的输入数据,通常是一个批次的数据。
  2. y: 目标数据(标签)。
    • 类型:Numpy 数组、列表、字典等。
    • 描述:这是模型的输出目标,即你希望模型预测的标签。如果模型是无监督的,这个参数可以省略。
  3. sample_weight: 样本权重。
    • 类型:Numpy 数组。
    • 描述:这是一个与 x 中每个样本相对应的权重数组,用于在计算损失时给不同样本分配不同的权重。形状应与 y 的第一个维度相同。
  4. class_weight: 类别权重。
    • 类型:字典。
    • 描述:这是一个字典,键是类别索引(整数),值是对应的权重。用于在计算损失时给不同类别分配不同的权重。这对于不平衡数据集特别有用。
  5. reset_metrics: 是否在每次调用后重置模型的指标。
    • 类型:布尔值。
    • 描述:如果设置为 True,则在每次调用 train_on_batch 后,模型的指标(如准确率)将被重置。如果设置为 False,指标将在多次调用之间累积。
  6. return_dict: 是否以字典形式返回结果。
    • 类型:布尔值。
    • 描述:如果设置为 True,则返回一个包含损失和所有指标的字典。如果设置为 False,则返回一个列表,其中第一个元素是损失值,后续元素是各个指标的值。

核心:👀👀👀👀👀👀 关注x,y 即可

预测需要注意

以这个案例为示:

for images, labels in val_ds.take(1):
    for i in range(10):
        plt.subplot(1, 10, i + 1)
        
        plt.imshow(images[i].numpy())
        
        # 增加一个维度
        img_array = tf.expand_dims(images[i], 0)
        
        # 预测
        predictions = model.predict(img_array)
        plt.title(image_classnames[np.argmax(predictions)])
        
        plt.axis("off")

注意: 增加一个维度,因为在模型输入默认有一个批次层,这个需要注意的。

2、猫狗识别实现

1、数据处理

1、导入库

import tensorflow as tf 
from tensorflow.keras import layers, models, datasets 
import numpy as np 

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]
    tf.config.experimental.set_memory_growth(gpu0, True)   # 输出存储在GPU
    tf.config.set_visible_devices([gpu0], "GPU")          # 选择第一块GPU
    
gpus
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

2、查看数据数量与类别

import os, pathlib
# 查看数据数量
data_dir = "./data/"
data_dir = pathlib.Path(data_dir)

images_path =  data_dir.glob('*/*')
images_path_list = [str(path) for path in images_path]

images_num = len(images_path_list)

image_classnames = [names for names in os.listdir(data_dir)]

print("images have number: ", images_num)
print("images have classes: ", image_classnames)
images have number:  3400
images have classes:  ['cat', 'dog']

3、导入数据

# 训练集 :验证集 = 8 :2

batch_size = 32
image_width = 224
image_height = 224

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    './data/',
    subset='training',
    validation_split=0.2,
    seed=42,
    batch_size=batch_size,
    shuffle=True,
    image_size=(image_width, image_height)
)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    './data/',
    validation_split=0.2,
    subset='validation',
    seed=42,
    batch_size=batch_size,
    shuffle=True,
    image_size=(image_width, image_height)
)
Found 3400 files belonging to 2 classes.
Using 2720 files for training.
Found 3400 files belonging to 2 classes.
Using 680 files for validation.

展示数据格式

# 展示一批数据格式
batch_datas, data_labels = next(iter(train_ds))

print("[N, W, H, C]: ", batch_datas.shape)
print("data_classes: ", data_labels)
[N, W, H, C]:  (32, 224, 224, 3)
data_classes:  tf.Tensor([0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0], shape=(32,), dtype=int32)

4、数据图片展示

import matplotlib.pyplot as plt 

plt.figure(figsize=(20, 10))

for i in range(20):
    plt.subplot(5, 10, i + 1)
    
    plt.imshow(batch_datas[i].numpy().astype("uint8"))
    
    plt.title(image_classnames[data_labels[i]])
    
    plt.axis('off')

plt.show()


在这里插入图片描述

5、数据归一化

数据存储格式:图片数据 + 标签

# 像素归一化, ---> [0, 1]
normalization_layer = layers.experimental.preprocessing.Rescaling(1.0 / 255)

# 训练集、测试集像素归一化
train_ds = train_ds.map(lambda x, y : (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y : (normalization_layer(x), y))

6、设置内存加速

from tensorflow.data.experimental import AUTOTUNE 

AUTOTUNE = tf.data.experimental.AUTOTUNE 

# 打乱顺序加速
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

2、模型构建

一共类别只有两类,故VGG16模型全连接层中,不需要展开那么多层,运用上次案例的模型即可。

def VGG16(class_num, input_shape):
    inputs = layers.Input(input_shape)
    
     # 1st block
    x = layers.Conv2D(64, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(inputs)
    x = layers.Conv2D(64, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2))(x)

    # 2nd block
    x = layers.Conv2D(128, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)
    x = layers.Conv2D(128, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2))(x)

    # 3rd block
    x = layers.Conv2D(256, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)
    x = layers.Conv2D(256, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)
    x = layers.Conv2D(256, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2))(x)

    # 4th block
    x = layers.Conv2D(512, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)
    x = layers.Conv2D(512, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)
    x = layers.Conv2D(512, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2))(x)

    # 5th block
    x = layers.Conv2D(512, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)
    x = layers.Conv2D(512, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)
    x = layers.Conv2D(512, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2))(x)
    
    # 全连接层, 这里修改以下
    x = layers.Flatten()(x)
    x = layers.Dense(4096, activation='relu')(x)
    x = layers.Dense(4096, activation='relu')(x)
    # 最后一层用激活函数:softmax
    out_shape = layers.Dense(class_num, activation='softmax')(x)
    
    # 创建模型
    model = models.Model(inputs=inputs, outputs=out_shape)
    
    return model
    
model = VGG16(len(image_classnames), (image_width, image_height, 3))
model.summary()
Model: "model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 224, 224, 3)]     0         
                                                                 
 conv2d (Conv2D)             (None, 224, 224, 64)      1792      
                                                                 
 conv2d_1 (Conv2D)           (None, 224, 224, 64)      36928     
                                                                 
 max_pooling2d (MaxPooling2D  (None, 112, 112, 64)     0         
 )                                                               
                                                                 
 conv2d_2 (Conv2D)           (None, 112, 112, 128)     73856     
                                                                 
 conv2d_3 (Conv2D)           (None, 112, 112, 128)     147584    
                                                                 
 max_pooling2d_1 (MaxPooling  (None, 56, 56, 128)      0         
 2D)                                                             
                                                                 
 conv2d_4 (Conv2D)           (None, 56, 56, 256)       295168    
                                                                 
 conv2d_5 (Conv2D)           (None, 56, 56, 256)       590080    
                                                                 
 conv2d_6 (Conv2D)           (None, 56, 56, 256)       590080    
                                                                 
 max_pooling2d_2 (MaxPooling  (None, 28, 28, 256)      0         
 2D)                                                             
                                                                 
 conv2d_7 (Conv2D)           (None, 28, 28, 512)       1180160   
                                                                 
 conv2d_8 (Conv2D)           (None, 28, 28, 512)       2359808   
                                                                 
 conv2d_9 (Conv2D)           (None, 28, 28, 512)       2359808   
                                                                 
 max_pooling2d_3 (MaxPooling  (None, 14, 14, 512)      0         
 2D)                                                             
                                                                 
 conv2d_10 (Conv2D)          (None, 14, 14, 512)       2359808   
                                                                 
 conv2d_11 (Conv2D)          (None, 14, 14, 512)       2359808   
                                                                 
 conv2d_12 (Conv2D)          (None, 14, 14, 512)       2359808   
                                                                 
 max_pooling2d_4 (MaxPooling  (None, 7, 7, 512)        0         
 2D)                                                             
                                                                 
 flatten (Flatten)           (None, 25088)             0         
                                                                 
 dense (Dense)               (None, 4096)              102764544 
                                                                 
 dense_1 (Dense)             (None, 4096)              16781312  
                                                                 
 dense_2 (Dense)             (None, 2)                 8194      
                                                                 
=================================================================
Total params: 134,268,738
Trainable params: 134,268,738
Non-trainable params: 0
_________________________________________________________________

3、模型训练

1、超参数设置

model.compile(
    optimizer = "adam",
    loss = 'sparse_categorical_crossentropy',
    metrics = ['accuracy']
)

2、模型训练

from tqdm import tqdm 
import tensorflow.keras.backend as K

learn_rate = 1e-4
epochs = 10

history_train_loss = []
history_train_accuracy = []
history_val_loss = []
histoty_val_accuracy = []

for epoch in range(epochs):
    train_total = len(train_ds)
    val_total = len(val_ds)
    
    with tqdm(total=train_total, desc=f'Epoch {epoch + 1} / {epochs}', mininterval=1, ncols=100) as pbar:
        learn_rate = learn_rate * 0.92   # 动态加载学习率
        K.set_value(model.optimizer.lr, learn_rate)
        
        # 创建存储的损失率、准确率
        train_loss, train_accuracy = 0, 0 
        batch_num = 0
        
        for image, label in train_ds:
            history = model.train_on_batch(image, label)   # 核心: 模型训练
            
            train_loss += history[0]
            train_accuracy += history[1]
            batch_num += 1
            
            pbar.set_postfix({"loss": "%.4f"%train_loss,
                              "accuracy":"%.4f"%train_accuracy,
                              "lr": K.get_value(model.optimizer.lr)})
            
            pbar.update(1)
        
        # 记录平均损失值、准确率
        history_train_loss.append(train_loss / batch_num)    
        history_train_accuracy.append(train_accuracy / batch_num)
        
    print("开始验证!!")
    
    with tqdm(total=val_total, desc=f'Epoch {epoch + 1} / {epochs}', mininterval=0.3, ncols=100) as pbar:
        
        val_loss, val_accuracy = 0, 0
        batch_num = 0
        
        for image, label in val_ds:
            history = model.train_on_batch(image, label)  # 核心: 训练
            
            val_loss += history[0] 
            val_accuracy += history[1]
            batch_num += 1   # 记录训练批次
            
            pbar.set_postfix({"loss": "%.4f"%val_loss,
                              "accuracy":"%.4f"%val_accuracy})
            
            pbar.update(1)
            
        # 记录 平均 损失值和准确率
        history_val_loss.append(val_loss / batch_num)
        histoty_val_accuracy.append(val_accuracy / batch_num)
        
    print('结束验证!')
    print("平均验证loss为:%.4f"%(val_loss / batch_num))
    print("平均验证准确率为:%.4f"%(val_accuracy / batch_num))
Epoch 1 / 10:   0%|                                                          | 0/85 [00:00<?, ?it/s]2024-11-15 17:02:53.513057: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8101
2024-11-15 17:02:56.690008: I tensorflow/stream_executor/cuda/cuda_blas.cc:1786] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.
Epoch 1 / 10: 100%|██████| 85/85 [00:21<00:00,  3.98it/s, loss=51.2915, accuracy=55.0000, lr=9.2e-5]
开始验证!!
Epoch 1 / 10: 100%|██████████████████| 22/22 [00:05<00:00,  4.39it/s, loss=5.7842, accuracy=19.8125]
结束验证!
平均验证loss为:0.2629
平均验证准确率为:0.9006
Epoch 2 / 10: 100%|█████| 85/85 [00:13<00:00,  6.32it/s, loss=13.8654, accuracy=80.2500, lr=8.46e-5]
开始验证!!
Epoch 2 / 10: 100%|██████████████████| 22/22 [00:03<00:00,  6.17it/s, loss=1.9731, accuracy=21.3125]
结束验证!
平均验证loss为:0.0897
平均验证准确率为:0.9688
Epoch 3 / 10: 100%|██████| 85/85 [00:13<00:00,  6.29it/s, loss=6.9991, accuracy=82.6562, lr=7.79e-5]
开始验证!!
Epoch 3 / 10: 100%|██████████████████| 22/22 [00:03<00:00,  6.54it/s, loss=1.1199, accuracy=21.5938]
结束验证!
平均验证loss为:0.0509
平均验证准确率为:0.9815
Epoch 4 / 10: 100%|██████| 85/85 [00:13<00:00,  6.35it/s, loss=4.5513, accuracy=83.4688, lr=7.16e-5]
开始验证!!
Epoch 4 / 10: 100%|██████████████████| 22/22 [00:03<00:00,  6.66it/s, loss=0.7666, accuracy=21.7812]
结束验证!
平均验证loss为:0.0348
平均验证准确率为:0.9901
Epoch 5 / 10: 100%|██████| 85/85 [00:13<00:00,  6.49it/s, loss=4.4772, accuracy=83.7188, lr=6.59e-5]
开始验证!!
Epoch 5 / 10: 100%|██████████████████| 22/22 [00:03<00:00,  6.61it/s, loss=0.5379, accuracy=21.8125]
结束验证!
平均验证loss为:0.0245
平均验证准确率为:0.9915
Epoch 6 / 10: 100%|██████| 85/85 [00:13<00:00,  6.39it/s, loss=1.5206, accuracy=84.4375, lr=6.06e-5]
开始验证!!
Epoch 6 / 10: 100%|██████████████████| 22/22 [00:03<00:00,  6.73it/s, loss=0.2960, accuracy=21.9062]
结束验证!
平均验证loss为:0.0135
平均验证准确率为:0.9957
Epoch 7 / 10: 100%|██████| 85/85 [00:13<00:00,  6.33it/s, loss=1.9587, accuracy=84.4062, lr=5.58e-5]
开始验证!!
Epoch 7 / 10: 100%|██████████████████| 22/22 [00:03<00:00,  6.31it/s, loss=0.2803, accuracy=21.9375]
结束验证!
平均验证loss为:0.0127
平均验证准确率为:0.9972
Epoch 8 / 10: 100%|██████| 85/85 [00:13<00:00,  6.43it/s, loss=0.6910, accuracy=84.7812, lr=5.13e-5]
开始验证!!
Epoch 8 / 10: 100%|██████████████████| 22/22 [00:03<00:00,  6.47it/s, loss=0.1591, accuracy=21.9375]
结束验证!
平均验证loss为:0.0072
平均验证准确率为:0.9972
Epoch 9 / 10: 100%|██████| 85/85 [00:13<00:00,  6.51it/s, loss=0.6709, accuracy=84.7812, lr=4.72e-5]
开始验证!!
Epoch 9 / 10: 100%|██████████████████| 22/22 [00:03<00:00,  6.64it/s, loss=0.1658, accuracy=21.9688]
结束验证!
平均验证loss为:0.0075
平均验证准确率为:0.9986
Epoch 10 / 10: 100%|█████| 85/85 [00:13<00:00,  6.43it/s, loss=0.5763, accuracy=84.7500, lr=4.34e-5]
开始验证!!
Epoch 10 / 10: 100%|█████████████████| 22/22 [00:03<00:00,  6.44it/s, loss=0.1906, accuracy=21.8750]

结束验证!
平均验证loss为:0.0087
平均验证准确率为:0.9943


4、结果显示

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
plt.plot(epochs_range, histoty_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()


在这里插入图片描述

5、预测

# 随机预测几张
plt.figure(figsize=(18 ,3))

for images, labels in val_ds.take(1):
    for i in range(10):
        plt.subplot(1, 10, i + 1)
        
        plt.imshow(images[i].numpy())
        
        # 增加一个维度
        img_array = tf.expand_dims(images[i], 0)
        
        # 预测
        predictions = model.predict(img_array)
        plt.title(image_classnames[np.argmax(predictions)])
        
        plt.axis("off")
        
plt.show()
1/1 [==============================] - 0s 29ms/step
1/1 [==============================] - 0s 27ms/step
1/1 [==============================] - 0s 34ms/step
1/1 [==============================] - 0s 29ms/step
1/1 [==============================] - 0s 29ms/step
1/1 [==============================] - 0s 32ms/step
1/1 [==============================] - 0s 28ms/step
1/1 [==============================] - 0s 33ms/step
1/1 [==============================] - 0s 29ms/step
1/1 [==============================] - 0s 29ms/step

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/918782.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Amazon Web Services (AWS)

一、Amazon Web Services (AWS)介绍 1、简介 2、产品 AWS 提供了各种云计算服务&#xff0c;包括 DynamoDB、S3、EC2、Lambda 等等。 登录aws后点击所有服务也可以看到amazon的所有服务&#xff1a; 3、免费试用产品 除了免费的Amazon Step Functions、Amazon Lambda&#…

Quartus+Nios II for eclipse问题合集

由于对于FPGANIOS II 的工作需要&#xff0c;对工作过程中遇到的问题进行记录&#xff0c;持续更新。 1、BSP directory does not exist: . Stop.Nios II使用过程中遇到的一些问题2_error executing nios2-bsp-generate-files --bsp-di-CSDN博客https://blog.csdn.net/qq_39485…

Java项目:校园宿舍管理系统(优质版)(Springboot3+Maven+Mybatis Plus+Vue3+ Element Plus+Mysql)

项目介绍 : Springboot3MavenMybatis PlusVue3 Element PlusMysql 开发的前后端分离的校园宿舍管理系统 项目演示: https://www.bilibili.com/video/BV16UmoYWEVR/ 运行环境: 最好是java jdk 1.8&#xff0c;我们在这个平台上运行的。其他版本理论上也可以。 IDE环境&#x…

RabbitMQ教程:发布/订阅模式(Publish/Subscribe)(三)

文章目录 RabbitMQ教程&#xff1a;发布/订阅模式&#xff08;Publish/Subscribe&#xff09;&#xff08;三&#xff09;一、引言二、简介三、准备工作3.1 说明3.2 生成项目 四、实战4.1 交换机&#xff08;Exchanges&#xff09;4.2 临时队列&#xff08;Temporary Queues&am…

SpringBoot(6)-Shiro

目录 一、是什么 二、准备工作 2.1 环境搭建 2.2 自定义Realm配置类 2.3 自定义shiro配置类 三、实践 3.1 请求拦截 3.2 用户认证 3.3 用户授权 3.4 shiro和thymeleaf整合 一、是什么 是java的一个安全框架 核心三大对象&#xff1a; 1、Subject【用户】 2、Secur…

Misc_01转二维码(不是二进制)

例题ctfhub/隐写v2.0 打开是一张图片 文件分离得到zip&#xff0c;爆破密码得到7878 打开得到0和1&#xff0c; !!!不是二进制转图片&#xff0c;直接是二维码 缩小能看到 000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000…

使用 K-means 算法进行豆瓣读书数据的文本聚类分析

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

STM32完全学习——F407ZGT6点亮LED

一、寄存器描述 我们想要点亮LED&#xff0c;无非就是对于寄存器的一些设置&#xff0c;主要分为两步&#xff0c;首先是需要打开相应GPIO的时钟&#xff0c;这是因为STM32在上电后&#xff0c;每个外设的时钟默认都是关闭的&#xff0c;需要我们手动打开。其次就是对GPIO的一…

Dubbo RPC线程模型

消费端线程模型&#xff0c;提供者端线程模型 消费端线程模型 对 2.7.5 版本之前的 Dubbo 应用&#xff0c;尤其是一些消费端应用&#xff0c;当面临需要消费大量服务且并发数比较大的大流量场景时&#xff08;典型如网关类场景&#xff09;&#xff0c;经常会出现消费端线程…

Python酷库之旅-第三方库Pandas(225)

目录 一、用法精讲 1056、pandas.PeriodIndex.dayofweek属性 1056-1、语法 1056-2、参数 1056-3、功能 1056-4、返回值 1056-5、说明 1056-6、用法 1056-6-1、数据准备 1056-6-2、代码示例 1056-6-3、结果输出 1057、pandas.PeriodIndex.day_of_week属性 1057-1、…

商业物联网详细指南:优势与挑战

物联网是信息技术行业最具前景的领域之一。为什么它如此热门呢&#xff1f;原因在于全球连接性。设备可以像人群一样相互协作。正如我们所知&#xff0c;协作能显著提高生产力。 物联网对普通用户和企业都有益处。许多日常流程可以通过传感器、扫描仪、摄像头和其他设备实现自…

Spring Boot汽车资讯:科技与汽车的新融合

摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了汽车资讯网站的开发全过程。通过分析汽车资讯网站管理的不足&#xff0c;创建了一个计算机管理汽车资讯网站的方案。文章介绍了汽车资讯网站的系统分析部分&…

vlan之间的通信(三层交换机)

拓补图&#xff1a; 【实验步骤】 LSW1配置&#xff1a; The device is running! <Huawei> <Huawei>sys Enter system view, return user view with CtrlZ. [Huawei]un in e Info: Information center is disabled. [Huawei]sys maluoying [maluoying]vla…

Redis作为分布式锁,得会避坑

日常开发中&#xff0c;经常会碰到秒杀抢购等业务场景。为了避免并发请求造成的库存超卖等问题&#xff0c;我们一般会用到Redis分布式锁。但是使用Redis分布式锁之前要知道有哪些坑是需要我们避过去的。 1. 非原子操作&#xff08;setnx expire&#xff09; 一说到实现Redis…

ETH钱包地址如何获取 如何购买比特币

首先我们要先注册一个交易所 Gate.io&#xff08;推荐&#xff09;: 点我注册 1、注册很简单&#xff0c;通过手机号就可以进行注册了。 2、获取ETH钱包地址 注册好之后&#xff0c;如图所示&#xff0c;点击“统一账户” 3、通过搜索栏搜索ETH&#xff0c;如下图所示 4、点…

基于Python+Django的农业害虫识别系统设计和实现(源码+论文+部署讲解等)

博主介绍&#xff1a;CSDN毕设辅导第一人、全网粉丝50W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌ 技术范围&#xff1a;SpringB…

Python多线程爬虫入门:让你的爬虫跑得更快

一、前言 在互联网时代&#xff0c;数据是最有价值的资源之一。而网页爬虫是获取数据的一种非常重要的工具。在这篇文章中&#xff0c;我们将学习如何用 Python 编写一个多线程网页爬虫&#xff0c;适合小白快速上手&#xff01; 二、多线程进程 单线程串行&#xff1a;一步…

使用Web Speech API实现语音识别与合成技术

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 使用Web Speech API实现语音识别与合成技术 使用Web Speech API实现语音识别与合成技术 使用Web Speech API实现语音识别与合成技…

NavVis VLX3的精度怎么去进行验证?【上海沪敖3D】

01、精度评价现状 三维捕捉行业还没有建立一个用于估算或验证移动激光扫描系统精度的统一标准。因此&#xff0c;需要高精度交付成果的专业人士很难相信设备所标注的精度规格&#xff0c;也就很难知道基于SLAM的移动激光扫描系统是否适合当前的项目。 NavVis将通过展示一种严格…

爬虫开发工具与环境搭建——环境配置

第二章&#xff1a;爬虫开发工具与环境搭建 第二节&#xff1a;环境配置 在进行爬虫开发之前&#xff0c;首先需要配置好开发环境。一个良好的开发环境不仅能提高开发效率&#xff0c;还能避免因环境不一致带来的问题。以下是环境配置的详细步骤&#xff0c;涵盖了Python开发…