GPT-5 要来了:抢先了解其创新突破

Microsoft 的工程师计划于 2024 年 11 月在 Azure 上部署 Orion (GPT-5)。虽然这一版本不会向公众开放,但其上线被视为人工智能领域的一个重要里程碑,并将产生深远的影响。

在这里插入图片描述

文章目录

    • GPT-5 真的要来了
    • GPT-4 的局限性
    • GPT-5 的创新突破与遗留挑战
      • GPT-5 预期的改进
      • GPT-5 遗留的挑战
    • 未来的发展方向

GPT-5 真的要来了

OpenAI 在 2023 年 3 月左右宣布了 GPT-5 的开发计划,这一消息引起了广泛关注。一些知名人士签署了暂停开发的请愿书,其中包括 AI 领域的先驱 Yoshua Bengio(图灵奖得主)、AI 研究人员 Stuart Russell 和 Gary Marcus、Apple 联合创始人 Steve Wozniak、前美国总统候选人 Andrew Yang,以及原子科学家公报主席 Rachel Bronson(反对可能终结人类的核战争)。特斯拉、Twitter 和 SpaceX 的 CEO 及 OpenAI 的前联合创始人 Elon Musk 也参与了签署,Stability AI 的 CEO Emad Mostaque 亦在其中。

虽然 GPT-4 在 AI 能力上取得了显著进步,但仍存在一些局限性。它并未导致大规模的失业或预示人类的灭亡,因此可能表明签署请愿书的人存在误解。

自从 GPT-4 发布以来已经过去一年多,对于代号为 Orion 的 GPT-5 的担忧逐渐减弱。现在,Orion 终于准备向全球推出。与以往不同的是,它不会通过 ChatGPT 向公众发布。OpenAI 计划首先向与其密切合作的公司提供早期访问权限,以便这些公司开发自己的产品和功能。虽然在内部,Orion 被视为 GPT-4 的后继者,但尚未确定是否会正式命名为 GPT-5。

有报告指出,GPT-5 的能力将提升 100 倍,但具体的“能力”细节尚不明确。然而,它仍将面临一些无法克服的限制。

首先,让我们探讨最新 GPT 版本中持续存在的问题。

GPT-4 的局限性

  1. 语言限制:尽管 GPT-4o 在多语言能力上有了提升,但在处理非英语语言时,尤其是那些高质量数据匮乏的语言时,仍然存在挑战,导致其响应和翻译效果不佳。
  2. 数据质量问题:一个突出的担忧是训练数据的质量不尽如人意,特别是在中文等语言中,这可能导致模型产生不准确或虚构的回应,因为低质量内容广泛存在。
  3. 事实准确性:即便是在明确的提示下,模型有时也可能提供错误或误导性的信息,这引发了对其可信度和可靠性的质疑。
  4. 部分指令遵循:当用户给出冗长的指令集时,即使这些指令都很清晰简单,模型可能只完成部分请求。对于 AI 来说,模型可能会完成它从训练中识别的部分,但可能会跳过或简化其他部分。在收到反馈后,模型可能会修正遗漏的部分,但同时可能忽略之前正确完成的部分。
  5. 资源消耗巨大:训练和运行 GPT-4o 这样的大型语言模型需要大量计算资源,这不仅限制了模型的可及性,还因为高能耗引发了环境方面的担忧。
  6. 社会偏见:GPT-4o 可能无意中反映出训练数据中的偏见,导致产生不公平甚至歧视性的输出,这可能影响公众观点并加剧现有社会问题。
  7. 拟人化倾向:使用“推理”和“理解”等术语来描述 AI 模型可能会导致不切实际的期望和误解。虽然这可以帮助消费者更好地理解 LLMs,但必须认识到这些模型实际上是通过模式预测文字,而非像人类一样真正理解或感知提示。
  8. 红队测试不足:目前由 70 多名专家组成的团队可能不足以充分应对潜在用户的多样化需求和技术相关的潜在风险。并且一直有传闻 OpenAI 的测试和安全团队对 Altman 激进的产品发布策略不满。
  9. 缺乏透明度:OpenAI 没有提供关于产品的充分信息,比如可持续性指标、即将推出的功能、发布日期或产品路线图。
  10. 高级模型访问受限:可能只有少数用户能够使用模型最强大的版本,或者由于高昂的费用,许多用户可能无力负担。

GPT-5 的创新突破与遗留挑战

OpenAI 对于 GPT-5 的计划充满神秘,目前关于其发布日期和功能的报道众说纷纭。(有趣的是,这种不一致性对一些人来说反而更具吸引力)尽管人们期望它能够解决 GPT-4o 的一些缺陷,但某些根本性挑战可能依然存在。

GPT-5 预期的改进

  1. 增强事实核查能力:GPT-5 预计将提升事实核查功能。当前像 GPT-4 这样的模型偶尔会产生不准确或虚构的信息,GPT-5 旨在通过引用更可靠的数据源和优化其响应验证过程来减少这些错误。
  2. 提升视频处理能力:GPT-4 在视频内容的处理与理解上存在局限,限制了其在多媒体应用中的表现。而 Orion 有望显著提升视频理解和处理能力,可能应用于实时视频分析、摘要甚至生成。
  3. 增强上下文记忆:GPT-5 预计将具备更强的记忆能力,可以在长时间对话中保留更多上下文信息。这将有助于创建更连贯、具有上下文意识的互动,使模型能够记住对话早期的细节并在后续交流中灵活应用。
  4. 先进的多模态能力:虽然 GPT-4 引入了基本的多模态功能,能够处理文本和图像,而 GPT-5 可能会在此基础上扩展,实现对文本、图像、视频,甚至音频的多种输入形式的无缝集成。
  5. 伦理与偏见控制:未来像 GPT-5 这样的模型预计将引入更复杂的机制,以减少偏见并更好地处理伦理复杂的情境。
  6. 为企业提供定制和微调功能:GPT-5 可能允许企业更精细地控制模型微调,以满足其特定需求。OpenAI 或将提供更高级的 API 和工具,帮助企业定制语言生成、调整语气,并优化模型响应,从而在客户服务、营销等多个领域实现更广泛的应用。
  7. 改进实时语言翻译:GPT-5 预计将增强 GPT-4 的语言翻译能力,目标是在更多语言和方言之间实现实时、上下文准确的翻译。

GPT-5 遗留的挑战

我认为如下问题依然会遗留在 GPT-5 中。

  1. 数据质量问题:模型依赖于大规模的互联网数据,这些数据往往带有偏见和不准确性,这一直是个问题。
  2. 非英语语言的挑战:尽管在提升非英语回应质量方面做出了努力,由于缺乏高质量的训练数据和熟练的培训师,仍会存在一些限制。
  3. 指令部分遵循:即便是简单明了的指令,如果包含太多限制条件,对于大型语言模型 (LLM) 来说也可能显得复杂。因为它们倾向于模式匹配而非完全理解提示。面对多重限制,LLM 可能只遵循最接近的模式,常常忽视某些指令。这个问题短期内难以解决。
  4. 资源消耗巨大:支撑 GPT 模型的 Transformer 架构需要大量资源,这种情况可能会持续。这可能带来环境隐患,例如,如果新的数据中心依赖核能,可能加速全球变暖或增加核废料风险。
  5. 社会偏见的延续:模型的训练数据主要来自互联网,如果不优先考虑高质量和无偏见的来源,可能会加剧和延续社会偏见。这突显了 OpenAI 在数据收集方面的局限性,也表明需要更加细致地挑选训练数据。

未来的发展方向

为了解决这些限制,并确保 AI 的负责任发展,我们可能需要采取以下措施:

  1. 新型语言模型:需要开发一种新的语言模型,它应当资源高效,能够在不依赖大量数据的情况下有效学习,适应语言的各种应用场景和细微差别。
  2. 高质量数据:为了减少偏见和不准确性,关键在于投资于多元化和高质量数据集的创建与管理。这包括精心选择数据来源、消除偏见,并确保数据的完整性。
  3. 提高透明度和责任意识:OpenAI 和其他 AI 开发者应优先考虑研发过程的透明度。通过分享模型的局限性、偏见和潜在影响的信息,可以增进公众信任,并促进关于 AI 在社会中作用的深入讨论。
  4. 用户教育:通过教育公众,使其了解 AI 的能力和限制,可以帮助管理期望,避免误用。
  5. 监管监督:政府和国际组织在监管 AI 开发和部署方面发挥着重要作用。通过制定合适的法规,他们能够在创新与安全之间取得平衡。这些法规应关注数据隐私、算法公平性和责任追究等问题。

为了实现平衡的发展,我们必须确保 AI 的发展是协作的,而不是被少数人垄断。公平竞争和透明度对于推动进步至关重要,而不是依赖于营销炒作。通过坦诚讨论挑战,我们可以利用 AI 的力量为人类带来福祉。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/917071.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++【深入项目-检测键盘】

神马是检测键盘,就是让编辑器可以检测键盘按下了什么按键,我们先科普复习检测键盘 。 检测键盘需要用到一些函数,请见下: ! KEY_DOWN( 80 ) 这个代码是检测按下键盘上P按键。那80是什么?原来是对应按键的&#xff0…

springboot的依赖实现原理:spring-boot-starter-parent解析

01 dependencyManagement的作用 在使用springboot时我们会在项目pom引入以下配置和依赖 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.7.18</version> &l…

Thinkphp6视图介绍

一.MVC MVC 软件系统分为三个基本部分&#xff1a;模型&#xff08;Model&#xff09;、视图&#xff08;View&#xff09;和控制器&#xff08;Controller&#xff09; ThinkPHP6 是一个典型的 MVC 架构 控制器—控制器&#xff0c;用于将用户请求转发给相应的Model进行处理&a…

【idea】更换快捷键

因为个人习惯问题需要把快捷键替换一下。我喜欢用CTRLD删除一下&#xff0c;用CTRLY复制一样。恰好这两个快捷键需要互换一下。 打开file——>setting——>Keymap——>Edit Actions 找到CTRLY并且把它删除 找到CTRLD 并且把它删除 鼠标右键添加CTRLY 同样操作在Delet…

Tiktok对接和内容发布申请流程

这段时间在搞AI生成视频&#xff0c;希望用户能一键发布到Tiktok&#xff0c;因此研究了一下Tiktok的开发者申请流程&#xff0c;发现好复杂&#xff0c;同时也发现Tiktok的开发也跟我一样&#xff0c;挺草台班子的 0、流程简述 废话不多说&#xff0c;Tiktok的开发者申请和…

[刷题]入门1.矩阵转置

博客主页&#xff1a;算法歌者本篇专栏&#xff1a;[刷题]您的支持&#xff0c;是我的创作动力。 文章目录 1、题目2、基础3、思路4、结果 1、题目 链接&#xff1a;洛谷-B2106-矩阵转置 2、基础 此题目主要考察二维数组的掌控能力。 3、思路 观察&#xff0c;可知&#…

ODC 如何精确呈现SQL耗时 | OceanBase 开发者工具解析

前言 在程序员或DBA的日常工作中&#xff0c;编写并执行SQL语句如同日常饮食中的一餐一饭&#xff0c;再寻常不过。然而&#xff0c;在使用命令行或黑屏客户端处理SQL时&#xff0c;常会遇到编写难、错误排查缓慢以及查询结果可读性不佳等难题&#xff0c;因此&#xff0c;图形…

大数据学习15之Scala集合与泛型

1. 概述 大部分编程语言都提供了数据结构对应的编程库&#xff0c;并称之为集合库(Collection Library)&#xff0c;Scala 也不例外&#xff0c;且它还拥有以下优点&#xff1a; 易用&#xff1a;灵活组合运用集合库提供的方法&#xff0c;可以解决大部分集合问题 简洁&#xf…

Linux网络——网络初识

目录 1. 认识协议 2. 协议的分层 3. OSI 七层模型 && TCP/IP 五层(四层)模型 4. 网络传输的基本流程 5. 以太网的通信原理 6. 数据的跨网络传播 7. 认识 IP 地址 ① IP 是什么 ② IP 与 MAC 的关系 ③ 为什么需要 IP 在谈及网络之前&#xff0c;我们要先对学…

数字IC后端低功耗设计实现案例分享(3个power domain,2个voltage domain)

下图所示为咱们社区T12nm A55低功耗实现项目。其实这个项目还可以根据产品的需求做一些改进。改进后项目实现的难度会大大增加。也希望通过今天的这个项目案例分享&#xff0c;帮助到今年IC秋招的同学。 芯片低功耗设计实现upf编写指南&#xff08;附低功耗项目案例&#xff0…

Ubuntu从入门到精通(一)系统安装

Ubuntu从入门到精通&#xff08;一&#xff09; 1 Ubuntu镜像选择 下载Ubuntu 20.04系统ISO镜像 安装 Ubuntu 20.04系统,就必须有 Ubuntu 20.04系统软件安装程序可以通过浏览器访问Ubuntu20.04的官方站点&#xff0c; 然后在导舰栏找划 Dowwnloads->Mirrors链接&#xff…

说说软件工程中的“协程”

在软件工程中&#xff0c;协程&#xff08;coroutine&#xff09;是一种程序运行的方式&#xff0c;可以理解成“协作的线程”或“协作的函数”。以下是对协程的详细解释&#xff1a; 一、协程的基本概念 定义&#xff1a;协程是一组序列化的子过程&#xff0c;用户能像指挥家…

【linux】进程等待与进程替换

&#x1f525;个人主页&#xff1a;Quitecoder &#x1f525;专栏&#xff1a;linux笔记仓 目录 01.进程等待系统调用获取子进程status常用宏使用示例 02.进程替换替换函数关键点解释&#xff1a;代码详细分析execvpe 函数的使用 01.进程等待 任何子进程&#xff0c;在退出的…

认证鉴权框架SpringSecurity-5--权限管理篇

上面两篇我们重点介绍了如何在代码上集成springSecurity&#xff0c;同时完成登录认证和token认证的过程。我们直到springSecurity处理能帮我们完成认证外&#xff0c;还可以帮助我们完成权限校验的工作&#xff0c;这篇我们来重点介绍下springSecurity是如何实现鉴权的。 一、…

RK3588开发板Android12-SDK更新通知

迅为RK3588开发板Android12 SDK升级至RK的android-12.1-mid-rkr14版本 内核版本&#xff1a;升级至 5.10.160 版本&#xff0c;提供更好兼容性和性能。 rkbin 版本&#xff1a;支持最新的 1.17 版本 bin 和 1.46 版本的 bl31。

stm32教程:OLED屏显示字母、汉字、图片工程讲解

早上好啊&#xff0c;大佬们&#xff0c;今天带来的是我们 stm32系列的第一个外设——OLED&#xff0c;相信大家对于OLED都不陌生了吧&#xff0c;这个可以说每一个项目里的必需品了&#xff0c;单片机离不开OLED就像西方离不开耶路撒冷。 在生活中&#xff0c;我们见到的OLED的…

力扣 LeetCode 28. 找出字符串中第一个匹配项的下标(Day4:字符串)

解题思路&#xff1a; KMP算法 需要先求得最长相等前后缀&#xff0c;并记录在next数组中&#xff0c;也就是前缀表&#xff0c;前缀表是用来回退的&#xff0c;它记录了模式串与主串(文本串)不匹配的时候&#xff0c;模式串应该从哪里开始重新匹配。 next[ j - 1 ] 记录了 …

我与Linux的爱恋:进程间通信 匿名管道

​ ​ &#x1f525;个人主页&#xff1a;guoguoqiang. &#x1f525;专栏&#xff1a;Linux的学习 文章目录 匿名管道pipe 匿名管道 匿名管道&#xff08;Anonymous Pipes&#xff09;是Unix和类Unix操作系统中的一种通信机制&#xff0c;用于在两个进程之间传递数据。匿名…

Java之JDBC,Maven,MYBatis

前言 就是用来操作数据库的 1.JDBC快速入门 注意在使用前一定要导入jar包 在模块那里新建目录&#xff0c;新建lib&#xff0c;粘贴复制jar包&#xff0c;我这个jar设置的是模块有效 package test1017;import java.sql.Connection; import java.sql.DriverManager; import…

基于Matlab的碎纸片的自动拼接复原技术

碎纸片的自动拼接复原技术 摘要&#xff1a;破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。目前发现对碎纸片的拼接大部分由人工完成&#xff0c;准确率较高&#xff0c;但耗费大量人力财力及时间&#xff0c;效率很低。随着计算机技术的…