【深度学习】模型参数冻结:原理、应用与实践

在深度学习领域,模型参数冻结是一种重要的技术手段,它在模型训练和优化过程中有着广泛的应用。本文将详细介绍模型参数冻结的相关概念、应用场景、在代码中的实现方式以及一些实际的案例分析。

一、模型参数冻结的概念

在深度学习模型的训练过程中,模型的参数会根据输入数据和损失函数,通过反向传播算法不断更新,以使得模型能够更好地拟合数据。然而,模型参数冻结则是将模型中的某些参数设置为不可训练的状态。具体而言,在训练过程中,这些被冻结的参数不会参与梯度计算,其值保持固定,不会随着训练的进行而改变。

二、模型参数冻结的应用场景

(一)迁移学习

  1. 原理
    迁移学习利用在大规模数据集上预训练好的模型,将其应用于新的、数据量可能相对较小的特定任务中。在这个过程中,预训练模型已经学习到了丰富的通用特征,如在自然语言处理中,预训练模型(如 BERT)已经对语言的语法、语义等有了很好的理解。
  2. 冻结参数的好处
    • 防止过拟合:新的任务数据集往往较小,如果对整个预训练模型进行训练,很容易导致过拟合。通过冻结预训练模型的大部分参数,只对新添加的用于特定任务的层(如针对新任务的分类层)进行训练,可以利用预训练模型中已经学到的通用知识,同时避免模型在小数据集上过度调整参数,从而减少过拟合的风险。
    • 加快训练速度:计算梯度和更新大量参数需要消耗大量的计算资源和时间。冻结大部分参数意味着在反向传播过程中,不需要为这些参数计算梯度,从而大大减少了计算量,加快了训练速度。

(二)模型微调

  1. 原理
    当模型已经在某个数据集上训练好,但需要应用于一个与原任务相似但又有一些差异的新任务时,会进行微调。例如,已经训练好的图像分类模型,现在要对其进行微调以适应新的图像类别。
  2. 冻结参数的好处
    • 保留已有知识:模型在之前的训练中已经学习到了一些有效的特征表示。通过冻结部分参数,可以保留这些已经学到的知识,避免在调整过程中破坏原有的良好特征。
    • 针对性调整:只对与新任务相关的部分参数进行更新,可以使模型更有针对性地适应新任务的要求。比如,在微调图像分类模型时,可能只需要调整最后几层的参数,因为前面的层已经学习到了图像的通用特征(如边缘、纹理等),而最后几层更关注于类别相关的特征。

三、在代码中的实现方式(以 PaddlePaddle 为例)

(一)基本的参数冻结操作

在 PaddlePaddle 中,模型的参数都有一个 stop_gradient 属性。当我们想要冻结某个参数时,只需将这个属性设置为 True。以下是一个简单的示例,展示了如何冻结一个线性层的权重参数:

import paddle
import paddle.nn as nn

# 创建一个线性层
linear = nn.Linear(10, 10)
# 获取线性层的权重参数
param = linear.weight
# 冻结权重参数
param.stop_gradient = True

(二)遍历模型冻结多个参数

在实际的模型中,可能需要冻结多个参数,甚至是整个模型的部分层的所有参数。以下是一个遍历模型参数并冻结指定层参数的示例。假设我们有一个自定义的模型类,它包含多个层:

import paddle
import paddle.nn as nn

class MyModel(nn.Layer):
    def __init__(self):
        super(MyModel, self).__init__()
        self.fc1 = nn.Linear(100, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = self.fc1(x)
        x = self.fc2(x)
        return x

model = MyModel()

# 冻结fc1层的参数
for name, param in model.named_parameters():
    if 'fc1' in name:
        param.stop_gradient = True

在上述代码中,我们通过遍历模型的参数,根据参数的名称判断是否属于要冻结的层(这里是 fc1 层),然后将其 stop_gradient 属性设置为 True

四、案例分析

(一)自然语言处理中的文本分类任务

假设我们要进行一个情感分析任务,使用一个预训练的语言模型(如ERNIE)。我们加载预训练的 ERNIE 模型,并在其基础上添加一个简单的分类层用于判断文本的情感是积极还是消极。

import paddle
from paddlenlp.transformers import ErnieModel
from paddle.nn import functional as F
import paddle.nn as nn

# 加载预训练的ERNIE模型
ernie = ErnieModel.from_pretrained('ernie')
# 冻结ERNIE模型的参数
for param in ernie.parameters():
    param.stop_gradient = True

# 添加用于情感分类的层
classifier = nn.Linear(ernie.config["hidden_size"], 2)

def forward(self, input_ids, token_type_ids, attention_mask):
    outputs = ernie(input_ids, token_type_ids, attention_mask)
    pooled_output = outputs[1]  # 获取[CLS]标记的输出
    logits = classifier(pooled_output)
    return logits

在这个案例中,通过冻结 ERNIE 模型的参数,我们利用了 ERNIE 在大规模文本数据上学习到的语言知识,只训练新添加的分类层,这样可以在较小的情感分析数据集上快速训练出一个有效的模型,同时减少过拟合的可能性。

(二)计算机视觉中的图像识别微调

假设我们已经有一个在 ImageNet 数据集上训练好的 ResNet 模型,现在要将其应用于一个新的图像识别任务,比如识别特定种类的花朵。

import paddle
import paddle.nn as nn
from paddle.vision.models import resnet50

# 加载预训练的ResNet50模型
model = resnet50(pretrained=True)

# 冻结前面大部分层的参数
for name, param in model.named_parameters():
    if 'layer4' not in name:  # 这里假设只调整最后一层(layer4)的参数
        param.stop_gradient = True

# 修改最后一层以适应新的类别数量
num_classes = 10  # 假设新的花朵类别有10种
model.fc = nn.Linear(model.fc.in_features, num_classes)

在这个案例中,我们冻结了 ResNet50 模型除最后一层之外的所有参数,因为前面的层已经学习到了图像的通用特征。然后我们修改最后一层(全连接层 fc)的输出维度以适应新的花朵类别数量,这样在微调过程中,模型可以在新的花朵图像数据集上快速适应,同时保留了在 ImageNet 数据集上学到的图像特征知识。

总之,模型参数冻结是深度学习中一种非常实用的技术,它在迁移学习、模型微调等场景中发挥了重要作用,可以帮助我们更好地利用已有的模型和数据,提高模型训练的效率和效果。合理地使用参数冻结技术,可以根据具体的任务和数据情况,优化模型的训练过程,避免过拟合,加快训练速度,并充分利用预训练模型所蕴含的知识。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/915000.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++】类与对象的基础概念

目录: 一、inline 二、类与对象基础 (一)类的定义 (二)访问限定符 (三)类域 (四)实例化概念 正文 一、inline 在C语言的学习过程中,大家肯定了解过宏这个概…

matlab实现主成分分析方法图像压缩和传输重建

原创 风一样的航哥 航哥小站 2024年11月12日 15:23 江苏 为了研究图像的渐进式传输技术,前文提到过小波变换,但是发现小波变换非常适合传输缩略图,实现渐进式传输每次传输的数据量不一样,这是因为每次变换之后低频成分大约是上一…

python成长技能之网络编程

文章目录 一、初识Socket1.1 什么是 Socket?1.2 socket的基本操作1.3 socket常用函数 二、基于UDP实现客户端与服务端通信三、基于TCP实现客户端与服务端通信四、使用requests模块发送http请求 一、初识Socket 1.1 什么是 Socket? Socket又称"套接字",…

ROM修改进阶教程------安卓14 安卓15去除app签名验证的几种操作步骤 详细图文解析

在安卓14 安卓15的固件中。如果修改了系统级别的app。那么就会触发安卓14 15的应用签名验证。要么会导致修改的固件会进不去系统,或者进入系统有bug。博文将从几方面来解析去除安卓14 15应用签名验证的几种方法。 💝💝💝通过博文了解: 1💝💝💝-----安卓14去除…

[Docker#6] 镜像 | 常用命令 | 迁移镜像 | 压缩与共享

目录 Docker 镜像是什么 生活案例 为什么需要镜像 镜像命令详解 实验 1.一些操作 1. 遍历查看镜像 2. 查看镜像仓库在本地的存储信息 进入镜像存储目录 查看 repositories.json 文件 3. 镜像过滤 4. 下载镜像时的分层 实战一:离线迁移镜像 实战二&…

「QT」几何数据类 之 QVector3d 三维向量类

✨博客主页何曾参静谧的博客📌文章专栏「QT」QT5程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasolid…

人工智能(AI)对于电商行业的变革和意义

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/402a907e12694df5a34f8f266385f3d2.png#pic_center> 🎓作者简介:全栈领域优质创作者 🌐个人主页:百锦再新空间代码工作室 📞工作室:新空间代…

物联网设备研究——分配推理负载的联合学习方法

概述 物联网(IoT)的最新发展导致人工智能模型被嵌入到传感器和智能手机等终端设备中。这些模型是根据每个设备的存储容量和计算能力定制的,但重点是在终端侧进行本地推理,以降低通信成本和延迟。 然而,与部署在边缘服…

CentOS Stream 9设置静态IP

CentOS Stream 9设置静态IP CentOS Stream 9作为CentOS Stream发行版的下一个主要版本,已经发布有一段时间,但与目前广泛使用的CentOS7有较大区别。安装试用Stream 9的过程中,就发现设置静态IP的方式和CentOS7/8差别较大,在此记录…

【嵌入式】ESP32开发(一)ESP-IDF概述

文章目录 1 前言2 IDF环境配置3 在VS Code中使用IDF3.1 使用ESP-IDF例程3.2 底部按钮的作用【重要!】3.3 高级用法4 ESP-IDF框架分析5 从零开始创建一个项目5.1 组件(component)6 主要参考资料7 遇到的一些问题与解决办法8 对于ESP-IDF开发的一些感受1 前言 对于ESP32的开发…

基于Multisim水箱水位控制系统仿真电路(含仿真和报告)

【全套资料.zip】水箱水位控制系统仿真电路Multisim仿真设计数字电子技术 文章目录 功能一、Multisim仿真源文件二、原理文档报告资料下载【Multisim仿真报告讲解视频.zip】 功能 1.在水箱内的不同高度安装3根金属棒,以感知水位变化情况, 液位分1&…

解读Nature:Larger and more instructable language models become less reliable

目录 Larger and more instructable language models become less reliable 核心描述 核心原理 创新点 举例说明 大模型训练,微调建议 Larger and more instructable language models become less reliable 这篇论文的核心在于对大型语言模型(LLMs)的可靠性进行了深入…

zabbix监控端界面时间与服务器时间不对应

1. 修改系统时间 # tzselect Please select a continent, ocean, "coord", or "TZ".1) Africa2) Americas3) Antarctica4) Asia5) Atlantic Ocean6) Australia7) Europe8) Indian Ocean9) Pacific Ocean 10) coord - I want to use geographical coordina…

ubuntu20.04安装FLIR灰点相机BFS-PGE-16S2C-CS的ROS驱动

一、Spinnaker 安装 1.1Spinnaker 下载 下载地址为: https://www.teledynevisionsolutions.com/support/support-center/software-firmware-downloads/iis/spinnaker-sdk-download/spinnaker-sdk–download-files/?pnSpinnakerSDK&vnSpinnakerSDK 在上述地址中…

Windows配置JDK

1、解压 下载以后解压,放在一个没有中文路径和没有空格的目录,如下图: 2、配置Java环境 1)、点击左下角windows图标,输入huanjing(或者path),打开环境变量配置 如图: …

Unity教程(十八)战斗系统 攻击逻辑

Unity开发2D类银河恶魔城游戏学习笔记 Unity教程(零)Unity和VS的使用相关内容 Unity教程(一)开始学习状态机 Unity教程(二)角色移动的实现 Unity教程(三)角色跳跃的实现 Unity教程&…

HCIP-HarmonyOS Application Developer 习题(二十三)

1、(多选)端云一体化已经集成以下哪些服务SDK。 A、云函数 B、云数据库 C、云存储 D、云托管 答案:AB 分析:云开发即为应用开发云侧工程,目前包含云函数与云数据库工程。 2、(多选)Entry下的m…

图数据库 | 5、图数据库三大组件之一 之 图计算 (下)

书接上文:图数据库 | 4、图数据库三大组件之一 ——图计算 (上)-CSDN博客 结合计算效率来评估与设计图计算所需的数据结构。 存储低效性或许是相邻矩阵或关联矩阵等数据结构的最大缺点,尽管它有着O(1)的访问时间复杂度。例如通过…

Android OpenGL ES详解——纹理:纹理过滤GL_NEAREST和GL_LINEAR的区别

目录 一、概念 1、纹理过滤 2、邻近过滤 3、线性过滤 二、邻近过滤和线性过滤的区别 三、源码下载 一、概念 1、纹理过滤 当纹理被应用到三维物体上时,随着物体表面的形状和相机视角的变化,会导致纹理在渲染过程中出现一些问题,如锯齿…

【java】java通过s3访问ceph报错

1.报错信息、背景 工作中起了几个访问ceph的服务pod节点,一段时间后1个节点一直报错Unable to execute HTTP request: Timeout waiting for connection from pool,详细i信息如下图片,有且仅有1个节点报错,其他节点访问正常。看日志…