3DGS与NeRF的区别

0 论文链接

nerf:https://arxiv.org/abs/2003.08934
3dgs:https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_low.pdf

1 简要

1.1 nerf

neural radiance fields神经辐射场
在这里插入图片描述
作者提出了一种优化来自一组输入图像的场景的连续5D神经辐射场表示(空间位置 x y z和视图方向 d θ)的方法。作者使用体绘制的技术来积累这个场景表示沿着射线的样本,以从任何视点渲染场景。作者可视化了在周围半球上随机捕获的合成 鼓场景 的100个输入视图的集合,最后作者显示了从优化的NeRF表示渲染的两个新视图。
在这里插入图片描述

1.2 3dgs

3d guassian splatting三维高斯喷溅
核心是构建以协方差为主导的3d高斯点云,然后围绕3d高斯点云进行渲染和优化。
在这里插入图片描述
从已有的点云模型出发,以每个点为中心,建立可学习的3d高斯表达,用相机参数把点投影到图像平面上,splatting即抛雪球的方法进行渲染,在splatting的痕迹中进行tile based的光栅化得到渲染图像,将渲染图像和GT图像求损失loss,沿蓝色箭头反向传播,自适应的密度控制模块根据传递到点上的梯度来决定是否需要对3d高斯做分割或者克隆,梯度也会传递到3d高斯里面,来更新其中存储的位置、协方差矩阵、球谐函数、不透明度这些参数。
实现了高分辨率的实时渲染

2 隐式几何与显式几何

nerf是神经隐式辐射场
而3d高斯是可微分的,可以实现快速α混合渲染
3dgs的显式几何,和nerf方法的隐式几何,是非常重要的区别

3 采样与渲染

从采样点颜色贡献度的角度进行nerf系的方法区分,可以分为体积类方法和表明类方法
2020年原版nerf属于体积类表达,输入5d信息(x y z d θ)输出颜色和体密度,采样点返回密度值反映了这里是否存在几何占用。
另一种热门的是表面类表达,输入采样点,sdf(signed distance function,符号距离函数)
输出空间中距离这个点最近的表明的距离。正值表示表面外,负值表示表面内,表面可以用所有的sdf=0的采样点的集合来表达,借助神经网络实现的sdf即神经sdf
体积类方法通过几何密度决定采样点颜色贡献度,表面类方法则判定越靠近表面的采样点颜色贡献度越高.
在这里插入图片描述
隐式的采样,投出射线,累积颜色不透明度来做渲染


3dgs的引言部分这样提到:nerf方式的渲染所需要的随机采样成本高,并且可能会导致噪声。
而3d高斯有个特性,其轴向积分等同2d高斯,从数学层面降低了采样的成本,我们并不需要花费高昂的成本做采样了,用数学的方式就可以轻松地把3dgs转化成一个2dgs。
在这里插入图片描述

直接把球抛掷在墙上,在墙上留下的斑点,就是3dgs splatting 投掷的结果,完成了采样的渲染

4 光栅化

传统的nerf方法并不能做光栅化,而3dgs可以进行光栅化,对速度的提升是至关重要的

5 可微性

nerf全链路可微
3dgs也具有可微分的特性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/913016.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

关于python的复习

Python的基础 自动声明: 在 Python 中,不需要显式声明变量类型,变量的类型是在赋值时根据值自动推断的。 动态类型: Python 是动态类型语言,变量的类型可以在运行时改变。 x 10 # 整数 x "hello" # 现在是字符串 变量…

HBuilderX运行微信小程序,编译的文件在哪,怎么运行

1. 点击HBuilderX顶部的运行-运行到小程序模拟器-微信开发者工具,就会开始编译 2. 编译完成后的文件在根目录找到 unpackage -- dist -- dev -- mp-weixin, 这里面就是编译后的文件,如果未跳转到开发者工具,那可能是没设置启动路径&#xff0…

自然语言处理在客户服务中的应用

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 自然语言处理在客户服务中的应用 自然语言处理在客户服务中的应用 自然语言处理在客户服务中的应用 引言 自然语言处理概述 定义…

【学习笔记】Kylin-Desktop-V10-SP1 麒麟系统知识4——设备设置

提示:学习麒麟Kylin-Desktop-V10-SP1系统设备设置相关知识,包含设备设置进入方法、配置打印机、设置鼠标、键盘相关参数(包含输入法的配置)、以及管理快捷键组合、和多屏协同相关配置 一、前期准备 成功安装麒麟系统&#xff08…

Gen-RecSys——一个通过生成和大规模语言模型发展起来的推荐系统

概述 生成模型的进步对推荐系统的发展产生了重大影响。传统的推荐系统是 “狭隘的专家”,只能捕捉特定领域内的用户偏好和项目特征,而现在生成模型增强了这些系统的功能,据报道,其性能优于传统方法。这些模型为推荐的概念和实施带…

【国内中间件厂商排名及四大中间件对比分析】

国内中间件厂商排名 随着新兴技术的涌入,一批国产中间件厂商破土而出,并在短时间内迅速发展,我国中间件市场迎来洗牌,根据市占率,当前我国中间件厂商排名依次为:东方通、宝兰德、中创股份、金蝶天燕、普元…

PVE纵览-备份与快照指南

PVE纵览-备份与快照指南 文章目录 PVE纵览-备份与快照指南摘要1 备份与快照概述定义与区别备份与快照在PVE中的应用场景 2 PVE 备份功能详解备份类型与策略配置备份任务自动化备份管理 3 PVE 快照功能详解快照的工作原理快照的创建与恢复机制快照对系统性能的影响快照的使用场景…

解非线性方程组

实验类型:●验证性实验 ○综合性实验 ○设计性实验 实验目的:进一步熟练掌握解非线性方程组牛顿迭代算法,提高编程能力和解算非线性方程组问题的实践技能。 实验内容: 设有非线性方程组(此方程组是非标准型) 实验说明&#xff1…

JavaWeb合集23-文件上传

二十三 、 文件上传 实现效果&#xff1a;用户点击上传按钮、选择上传的头像&#xff0c;确定自动上传&#xff0c;将上传的文件保存到指定的目录中&#xff0c;并重新命名&#xff0c;生成访问链接&#xff0c;返回给前端进行回显。 1、前端实现 vue3AntDesignVue实现 <tem…

设计模式-七个基本原则之一-开闭原则 + SpringBoot案例

开闭原则:(SRP) 面向对象七个基本原则之一 对扩展开放&#xff1a;软件实体&#xff08;类、模块、函数等&#xff09;应该能够通过增加新功能来进行扩展。对修改关闭&#xff1a;一旦软件实体被开发完成&#xff0c;就不应该修改它的源代码。 要看实际场景&#xff0c;比如组内…

图形几何之美系列:仿射变换矩阵(二)

“ 在几何计算、图形渲染、动画、游戏开发等领域&#xff0c;常需要进行元素的平移、旋转、缩放等操作&#xff0c;一种广泛应用且简便的方法是使用仿射变换进行处理。相关的概念还有欧拉角、四元数等&#xff0c;四元数在图形学中主要用于解决旋转问题&#xff0c;特别是在三维…

python识别ocr 图片和pdf文件

#识别图片 pip3 install paddleocr pip3 install paddlepaddle#识别pdf pip3 install PyMuPDF 重点&#xff1a;路径不能有中文&#xff0c;不然pdf文件访问不了 from paddleocr import PaddleOCR from rest_framework.response import Response from rest_framework.views im…

使用Ubuntu快速部署MinIO对象存储

想拥有自己的私有云存储&#xff0c;安全可靠又高效&#xff1f;MinIO是你的理想选择&#xff01;这篇文章将手把手教你如何在Ubuntu 22.04服务器上部署MinIO&#xff0c;并使用Nginx反向代理和Let’s Encrypt证书进行安全加固。 即使你是新手&#xff0c;也能轻松完成&#xf…

EasyUI弹出框行编辑,通过下拉框实现内容联动

EasyUI弹出框行编辑&#xff0c;通过下拉框实现内容联动 需求 实现用户支付方式配置&#xff0c;当弹出框加载出来的时候&#xff0c;显示用户现有的支付方式&#xff0c;datagrid的第一列为conbobox,下来选择之后实现后面的数据直接填充&#xff1b; 点击新增&#xff1a;新…

【神经科学学习笔记】基于分层嵌套谱分割(Nested Spectral Partition)模型分析大脑网络整合与分离的学习总结

一、前言 1.学习背景 最近在学习脑网络分析方法时&#xff0c;笔者偶然读到了一篇发表在Physical Review Letters上的文章&#xff0c;文章介绍了一种名为嵌套谱分割(Nested-Spectral Partition, NSP)的方法&#xff0c;用于研究大脑功能网络的分离和整合特性。 传统的脑网络分…

如何优雅处理异常?处理异常的原则

前言 在我们日常工作中&#xff0c;经常会遇到一些异常&#xff0c;比如&#xff1a;NullPointerException、NumberFormatException、ClassCastException等等。 那么问题来了&#xff0c;我们该如何处理异常&#xff0c;让代码变得更优雅呢&#xff1f; 1 不要忽略异常 不知…

海量数据迁移:Elasticsearch到OpenSearch的无缝迁移策略与实践

文章目录 一&#xff0e;迁移背景二&#xff0e;迁移分析三&#xff0e;方案制定3.1 使用工具迁移3.2 脚本迁移 四&#xff0e;方案建议 一&#xff0e;迁移背景 目前有两个es集群&#xff0c;版本为5.2.2和7.16.0&#xff0c;总数据量为700T。迁移过程需要不停服务迁移&#…

macOS开发环境配置与应用开发(详细讲解)

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 1. 引言 macOS作为Apple公司推出的桌面操作系统&#xff0c;以其稳定性、优雅的用户界面和强大的开发工具吸引了大量开发者。对于…

【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法

【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法 【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法 文章目录 【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和…

前端学习之ES6+

1.ES6是什么 ES6&#xff0c;全称是ECMAScript 6&#xff0c;是JavaScript语言的下一代标准&#xff0c;由ECMA国际组织在2015年6月正式发布。ES6也被称作ECMAScript 2015&#xff0c;从这个版本开始&#xff0c;ECMA组织决定每年发布一个新的ECMAScript版本&#xff0c;以使J…