【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法

【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法

【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法


文章目录

  • 【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
  • 3. Methodology
    • 3.1. Model architecture
      • 3.1.1. Global Local feature extraction block
      • 3.1.2. Detailed spatial spectral Aggregation block
    • 3.2. Deep transfer learning method


欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议入口:https://ais.cn/u/mmmiUz

论文链接:https://www.sciencedirect.com/science/article/pii/S1569843223004363

3. Methodology

3.1. Model architecture

SCDUNet++的整体架构如图4所示。模型中的编码器采用了GLFE模块,这是一个混合卷积神经网络(CNN)-Transformer模块;同时,设计了DSSA模块,以便更精细地提取光谱和空间特征。此外,采用了嵌套解码器并配备密集跳跃连接(DSC),用于在每个阶段恢复特征的分辨率。最终,各阶段特征加权融合,以获得最终结果。实现代码可在https://github.com/lewuu/SCDUNetPP获取。
在这里插入图片描述

3.1.1. Global Local feature extraction block

在遥感影像中,滑坡特征间的巨大差异及地物间的相似性增加了区分滑坡的难度。GLFE模块通过浅层CNN结构和深层Swin Transformer结构组合,确保了更准确的信息提取(如图4(b)所示)。

给定输入滑坡图像 X i n ∈ R H × W × C X_{in}∈R^{H×W×C} XinRH×W×C,将 X i n X_{in} Xin 划分为不重叠的补丁 X P ∈ R H / P × W / P × C X_{P}∈R^{H/P×W/P×C} XPRH/P×W/P×C,其中 P = 4 P=4 P=4(Liu et al., 2021),这些补丁经过线性嵌入,输入两个连续的Swin Transformer模块,以获取特征 F 3 ∈ R H / 4 × W / 4 × 2 N F_{3}∈R^{H/4×W/4×2N} F3RH/4×W/4×2N,其中 N = 32 N=32 N=32。前一阶段输出特征在第4至第5阶段经过补丁合并以实现下采样,随后进入六个和两个连续的Swin Transformer模块,分别得到特征 F 4 ∈ R H / 8 × W / 8 × 4 N F_{4}∈R^{H/8×W/8×4N} F4RH/8×W/8×4N F 5 ∈ R H / 16 × W / 16 × 8 N F_{5}∈R^{H/16×W/16×8N} F5RH/16×W/16×8N

我们发现补丁切分会导致信息损失,从而影响精度。因此,在较浅层设计了两层CNN结构,以补充模型的局部特征提取能力(Yuan et al.,2023)。第一阶段通过两个3 × 3卷积模块获取特征 F 1 ∈ R H × W × N F_{1}∈R^{H×W×N} F1RH×W×N,第二阶段通过下采样和三个3 × 3卷积模块获得特征 F 2 ∈ R H / 2 × W / 2 × 2 N F_{2}∈R^{H/2×W/2×2N} F2RH/2×W/2×2N

在三个Swin Transformer模块中,窗口大小为8,每个阶段的注意力头数量分别为{2, 4, 8},每个头的查询维度为32。此外,由于设计了较浅的网络深度({32, 64, 64, 128, 256}),该模型在参数量和训练难度上具有优势。

3.1.2. Detailed spatial spectral Aggregation block

由于多光谱图像包含比RGB图像更复杂的信息,DSSA模块接收来自光谱(图4 III)和浅层CNN(图4 I和图4 II)的特征输入,从而能够提取空间和光谱特征信息,使模型能够关注更全面和细致的特征。DSSA模块由三个膨胀率分别为{1, 2, 3}的膨胀卷积、一个空间池化模块和一个光谱池化模块组成,如图4(e)所示。

DSSA模块接收来自两个分支的输入:一是光谱张量 X S ∈ R H × W × C S X_{S}∈R^{H×W×C_S} XSRH×W×CS(图4 III),另一是GLFE模块中的特征 F 1 ∈ R H × W × N F_{1}∈R^{H×W×N} F1RH×W×N(图4 II)和 F 2 ∈ R H / 2 × W / 2 × 2 N F_{2}∈R^{H/2×W/2×2N} F2RH/2×W/2×2N(图4 I)。DSSA模块融合这两个分支的特征以获得张量 T i n ∈ R H × W × N T_{in}∈R^{H×W×N} TinRH×W×N,其表达式如公式(5)所示:
在这里插入图片描述
其中, F u p ( ⋅ ) F_{up}(·) Fup()表示使用最近邻插值的上采样函数, C 1 × 1 ( ⋅ ) C_{1×1}(·) C1×1() C 3 × 3 ( ⋅ ) C_{3×3}(·) C3×3()分别代表具有批量归一化和GELU激活的1×1和3×3卷积层, © © c表示特征拼接操作。

在空间池化模块中,张量 T i n T_{in} Tin通过在垂直和水平方向上进行全局平均池化和全局最大池化得到向量 P a v g H ∈ R H × 1 × N P_{avgH}∈R^{H×1×N} PavgHRH×1×N P a v g W ∈ R 1 × W × N P_{avgW}∈R^{1×W×N} PavgWR1×W×N P m a x H ∈ R H × 1 × N P_{maxH}∈R^{H×1×N} PmaxHRH×1×N P m a x W ∈ R 1 × W × N P_{maxW}∈R^{1×W×N} PmaxWR1×W×N。这些向量的元素可以通过公式(6)至(9)计算得出。
在这里插入图片描述
其中, h ∈ [ 0 , H ) h∈[0,H) h[0,H) w ∈ [ 0 , W ) w∈[0,W) w[0,W) n ∈ [ 0 , N ) n∈[0,N) n[0,N)表示在垂直、水平和通道维度上的索引。垂直和水平向量相乘,以分别获得空间中的特征分布权重。随后,将这两个权重结合并通过卷积层进行压缩,以获得空间池化特征 T s p a t ∈ R H × W × N T_{spat}∈R^{H×W×N} TspatRH×W×N,其表达式如公式(10)所示:
在这里插入图片描述
其中, ⊗ ⊗ 表示矩阵乘法。在光谱池化模块中,张量 T i n T_{in} Tin被压缩以获得向量 P a v g ∈ R N P_{avg}∈R^N PavgRN P m a x ∈ R N P_{max}∈R^N PmaxRN。这些向量中的元素可以通过公式(11)和(12)计算得出。
在这里插入图片描述
这两个向量被拼接并压缩,以获得光谱通道上的注意力权重。随后,这些权重被扩展,以获得大小匹配的光谱池化特征张量 T s p e c ∈ R H × W × N T_{spec}∈R^{H×W×N} TspecRH×W×N,其表达式如公式(13)所示:
在这里插入图片描述
其中, F e x p a n d ( ⋅ ) F_{expand}(·) Fexpand()表示张量扩展函数。接下来,我们可以将从上述两个模块获得的特征与经过三次膨胀卷积处理后的 T i n T_{in} Tin特征叠加。然后进行压缩,以获得DSSA模块的最终特征 T p s s d ∈ R H × W × N T_{pssd}∈R^{H×W×N} TpssdRH×W×N,其表达式如公式(14)所示:
在这里插入图片描述
其中, C i ( ⋅ ) C_{i}(·) Ci()表示膨胀率为 i i i 的膨胀卷积。

3.2. Deep transfer learning method

我们采用了一种简单的基于模型的迁移学习(DTL)方法来评估DTL在提升局部模型(LM)及我们模型转移性能方面的可行性,如图5所示。源领域模型某些层的参数被转移到目标模型,使目标模型能够从源领域学习知识。随后,目标模型可以使用少量目标数据进行微调,从而获得适用于目标领域的模型(Wambugu et al., 2021;Wang et al., 2022)。
在这里插入图片描述

在遥感影像(RSIs)中,滑坡与背景的分布极为不平衡。为确保训练的有效性,我们将Lovász-Softmax损失(Berman et al., 2018)与Tversky损失(Salehi et al., 2017)结合,形成了平衡的Lovász-Softmax Tversky损失。其表达式如公式(15)所示:
在这里插入图片描述
其中, c c c 为类别 C C C 的子类, m ( c ) m(c) m(c) 是属于类别 C C C c c c 的像素误差向量, Δ J c ΔJ_c ΔJc 是损失因子。 p 0 i p_{0i} p0i p 1 i p_{1i} p1i 分别表示第 i i i 个像素为滑坡和非滑坡的概率, g 0 i g_{0i} g0i g 1 i g_{1i} g1i 分别表示滑坡和非滑坡的真实标签。参数 α α α β β β 分别设置为 0.3 和 0.7。

结果通过精确度、召回率、F1分数、交并比(IoU)、均值交并比(MIoU)和Matthews相关系数(MCC)进行评估。这些指标是基于真正例(TP)、假正例(FP)、假负例(FN)和真负例(TN)计算的,其表达式如公式(16)至(21)所示:
在这里插入图片描述
(1) 数据集划分

  • 训练集、验证集和泸定地区的两个测试区域按比例划分为6:2:1:1。九寨沟地区的两个数据集被用作测试集。

(2) 数据增强

对训练数据应用了在线增强,包括:

  • (i) 以1/4的概率旋转90°、180°、270°或不旋转;
  • (ii)以1/3的概率进行上下翻转、左右翻转或不翻转;
  • (iii) 以0.8的概率进行随机裁剪; (iv) 以0.4的概率进行随机擦除。

(3) 超参数详情

  • 我们的模型是在PyTorch框架下构建的,使用AdamW优化器进行训练,权重衰减设为1e-4。初始学习率设置为1e-4,最小学习率设置为9e-6,采用余弦衰减策略。所有实验均在NVIDIA GeForce RTX 2060 12G GPU上进行。

欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议入口:https://ais.cn/u/mmmiUz

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/912987.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前端学习之ES6+

1.ES6是什么 ES6,全称是ECMAScript 6,是JavaScript语言的下一代标准,由ECMA国际组织在2015年6月正式发布。ES6也被称作ECMAScript 2015,从这个版本开始,ECMA组织决定每年发布一个新的ECMAScript版本,以使J…

查缺补漏----用户上网过程(HTTP,DNS与ARP)

(1)HTTP 来自湖科大计算机网络微课堂: ① HTTP/1.0采用非持续连接方式。在该方式下,每次浏览器要请求一个文件都要与服务器建立TCP连接当收到响应后就立即关闭连接。 每请求一个文档就要有两倍的RTT的开销。若一个网页上有很多引…

【广西】《广西壮族自治区本级政务信息化建设和运维项目预算支出标准》(桂财建〔2023〕102号)-省市费用标准解读系列09

《广西壮族自治区本级政务信息化建设和运维项目预算支出标准》(桂财建〔2023〕102号)是广西壮族自治区财政厅于2023年9月26日发布的费用标准(了解更多可直接关注我们咨询)。我司基于专业第三方信息化项目造价机构角度,…

Linux基础-常用操作命令详讲

Linux基础-常用操作命令详讲 一、openssl加密简单介绍 1. 生成加密的密码散列(password hash)​编辑 1.1 常见的选项总结表 1.2 加密参数详解 2. 自签名证书 3. 证书转换 二、文件管理 1. 创建空文件 ​编辑 2. 删除文件 4. 新建目录 ​编辑…

ALB搭建

ALB: 多级分发、消除单点故障提升应用系统的可用性(健康检查)。 海量微服务间的高效API通信。 自带DDoS防护,集成Web应用防火墙 配置: 1.创建ECS实例 2.搭建应用 此处安装的LNMP 3.创建应用型负载均衡ALB实例 需要创建服务关联角…

C语言笔记(字符串函数,字符函数,内存函数)

目录 前言 1.字符串函数 1.1.strlen 1.2.strcpy 1.3.strcat 1.4.strcmp 1.5.strncpy 1.6.strncat 1.7.strncmp 1.8.strstr 1.9.strtok 1.10.strerror 2.字符函数 2.1字符分类函数 2.2字符转换函数 3.内存函数 3.1.mencpy 3.2.memmove 3.3.memcmp 前言 本文重…

HCIP-HarmonyOS Application Developer V1.0 笔记(五)

弹窗功能 prompt模块来调用系统弹窗API进行弹窗制作。 当前支持3种弹窗API,分别为: 文本弹窗,prompt.showToast;对话框,prompt.showDialog;操作菜单,prompt.showActionMenu。 要使用弹窗功能&…

Linux相关概念和易错知识点(20)(dentry、分区、挂载)

目录 1.dentry (1)路径缓存的原因 (2)dentry的结构 ①多叉树结构 ②file和dentry之间的联系 ③路径概念存在的意义 2.分区 (1)为什么要确认分区 (2)挂载 ①进入分区 ②被挂…

Redis 缓存击穿

目录 缓存击穿 什么是缓存击穿? 有哪些解决办法? 缓存穿透和缓存击穿有什么区别? 缓存雪崩 什么是缓存雪崩? 有哪些解决办法? 缓存预热如何实现? 缓存雪崩和缓存击穿有什么区别? 如何保…

电信网关配置管理系统 upload_channels.php 文件上传致RCE漏洞复现

0x01 产品简介 中国电信集团有限公司(英文名称“China Telecom”、简称“中国电信”)成立于2000年9月,是中国特大型国有通信企业、上海世博会全球合作伙伴。电信网关配置管理系统是一个用于管理和配置电信网络中网关设备的软件系统。它可以帮助网络管理员实现对网关设备的远…

澳鹏通过高质量数据支持 Onfido 优化AI反欺诈功能

“Appen 在 Onfido 的发展中发挥了至关重要的作用,并已成为我们运营的重要组成部分。我们很高兴在 Appen 找到了可靠的合作伙伴。” – Onfido 数据和分析总监 Francois Jehl 简介:利用人工智能和机器学习增强欺诈检测 在当今日益数字化的世界&#xff…

网站架构知识之Ansible模块(day021)

1.Ansible模块 作用:通过ansible模块实现批量管理 2.command模块与shell模块 command模块是ansible默认的模块,适用于执行简单的命令,不支持特殊符号 案列01,批量获取主机名 ansible all -m command -a hostname all表示对主机清单所有组…

应对AI与机器学习的安全与授权管理新挑战,CodeMeter不断创新引领保护方案

人工智能(AI)和机器学习(ML)技术正在快速发展,逐渐应用到全球各类主流系统、设备及关键应用场景中,尤其是在政府、商业和工业组织不断加深互联的情况下,AI和ML技术的影响日益广泛。虽然AI技术的…

实现uniapp-微信小程序 搜索框+上拉加载+下拉刷新

pages.json 中的配置 { "path": "pages/message", "style": { "navigationBarTitleText": "消息", "enablePullDownRefresh": true, "onReachBottomDistance": 50 } }, <template><view class…

布谷直播源码部署服务器关于数据库配置的详细说明

布谷直播源码搭建部署配置接口数据库 /public/db.php&#xff08;2019年8月后的系统在该路径下配置数据库&#xff0c;老版本继续走下面的操作&#xff09; 在项目代码中执行命令安装依赖库&#xff08;⚠️注意&#xff1a;如果已经有了vendor内的依赖文件的就不用执行了&am…

【C++】STL— stack的常见用法和模拟实现

目录 1、stack的介绍 2、stack的使用 构造一个空栈 stack的简单接口应用 3、stack的模拟实现 4、栈的相关题目 4.1 最小栈 4.1.2思路 4.1.3 实现代码 4.2 栈的压入、弹出序列 4.2.2 思路 4.2.3程序实现 1、stack的介绍 在C中&#xff0c;stack是一种标准模板库&am…

vue大疆建图航拍功能实现

介绍 无人机在规划一块区域的时候&#xff0c;我们需要手动的给予一些参数来影响无人机飞行&#xff0c;对于一块地表&#xff0c;无人机每隔N秒在空中间隔的拍照地表的一块区域&#xff0c;在整个任务执行结束后&#xff0c;拍到的所有区域照片能够完整的表达出一块地表&…

[ DOS 命令基础 2 ] DOS 命令详解-网络相关命令

&#x1f36c; 博主介绍 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 _PowerShell &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 &#x1f389;点赞➕评论➕收藏 养成习…

es自动补全(仅供自己参考)

elasticssearch提供了CompletionSuggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询效率&#xff0c;对于文档中字段的类型有一些约束&#xff1a; 查询类型必须是&#xff1a;completion 字段内容是多个补全词条形成的数组 P…

react jsx基本语法,脚手架,父子传参,refs等详解

1&#xff0c;简介 1.1 概念 react是一个渲染html界面的一个js库&#xff0c;类似于vue&#xff0c;但是更加灵活&#xff0c;写法也比较像原生js&#xff0c;之前我们写出一个完成的是分为html&#xff0c;js&#xff0c;css&#xff0c;现在我们使用react库我们把html和js结…