影响神经网络速度的因素- FLOPs、MAC、并行度以及计算平台

影响神经网络速度的四个主要因素分别是 FLOPs(浮点操作数)、MAC(内存访问成本)、并行度以及计算平台。这些因素共同作用,直接影响到神经网络的计算速度和资源需求。

1. FLOPs(Floating Point Operations)

  • 含义:FLOPs 表示神经网络执行过程中需要进行的浮点操作总数。FLOPs 高度影响计算密集度,通常以“乘加”操作的次数(Multiply-Add Count)来衡量。
  • 对速度的影响:更高的 FLOPs 数量意味着更多的计算操作,从而延长了执行时间。因此,优化 FLOPs 能减少模型推理时的计算量,降低时延。
  • 优化方法:减少 FLOPs 的方法包括模型压缩、知识蒸馏、剪枝以及使用高效的网络架构(如 MobileNet、ShuffleNet 等)。

2. MAC(Memory Access Cost)

  • 含义:MAC 指内存访问成本,表示神经网络在运算过程中从内存中读取和写入数据所需的时间。内存访问速度相对较慢,对性能影响显著,尤其是当神经网络模型较大、需要频繁读写时。
  • 对速度的影响:内存访问较慢会成为瓶颈,延长模型的计算时间。即使 FLOPs 低的网络,如果频繁读写内存,速度仍可能较慢。
  • 优化方法:减少数据的访问频率,充分利用缓存层级,可以通过模型量化、减少参数和使用小型网络结构来降低内存开销。另外,优化计算过程中的数据复用也能显著降低 MAC。

已知条件

  • Feature Map 大小:设为 h×w
  • 输入通道数:设为 c1​
  • 输出通道数:设为 c2
  • 浮点操作数 (FLOPs):已知为 B=h×w×c1×c2

可以得出:

内存访问成本 (MAC) 表达式

MAC 表达式为:

将 FLOPs 的已知条件代入上式,可以将 MAC 表达式简化为:

根据均值不等式分析

通过均值不等式,可以得到 ,当且仅当 c1=c2​ 时等式成立。因此在给定 FLOPs 前提下,MAC 达到取值的最小值。

当卷积层的输入特征通道数 c1 和输出特征通道数 c2 相等时,MAC 取得最小值,从而在相同 FLOPs 前提下可以使模型速度最快。

3. 并行度

  • 含义:并行度表示神经网络各层在硬件上的并行执行能力。网络的并行性越高,硬件可以同时处理的操作越多,从而提高计算效率。
  • 对速度的影响:高并行度的模型在多核 CPU、GPU 或 TPU 上运行时能显著加快推理速度。相反,若网络层之间存在较多的数据依赖关系,会降低并行度,导致计算瓶颈。
  • 优化方法:选择并行友好的架构,如卷积层和批量归一化等操作,避免多层之间的数据依赖。采用残差结构(ResNet)等方式,可以提高网络的并行度,从而更高效地利用硬件资源。

4. 计算平台(硬件)

  • 含义:计算平台指运行神经网络的硬件,如 GPU、TPU、CPU、NPU 或其他专用芯片。不同硬件在计算能力、内存带宽、并行处理能力上有差异。
  • 对速度的影响:不同硬件平台对神经网络性能的影响非常显著。GPU 和 TPU 拥有更强的并行计算能力和高带宽,非常适合处理矩阵和张量运算的深度学习任务;而 CPU 则在处理通用任务上表现较好。专用加速芯片(如 NPU、FPGA)可根据特定的模型需求进行优化,从而达到更高效率。
  • 优化方法:选择适合模型和任务需求的硬件平台,在设计和选择模型时考虑硬件特性。同时可以结合框架的加速库(如 cuDNN、MKL-DNN 等)来进一步优化模型性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/912161.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

02_ElementUI

一.前端工程化 1.1 概述 前端工程化是使用软件工程的方法来单独解决前端的开发流程 中模块化、组件化、规范化、自动化的问题,其主要目的为了 提高效率和降低成本。 1.2 NodeJS的安装 Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行时环 境,可以使 JavaS…

Pytorch实现运动鞋识别

Pytorch实现运动鞋识别 🍨 本文为🔗365天深度学习训练营 中的学习记录博客 🍖 原作者:K同学啊 电脑系统:Windows11 显卡型号:NVIDIA Quadro P620 语言环境:python 3.9.7 编译器:j…

[卷积神经网络]使用YOLOv11训练自己的模型

YoloV11的源码:YOLOv11 一、数据集准备 首先,准备好自己的数据集,包含图像文件和标注文件,因为我的数据集上Voc格式,所以需要先转为yolo格式,可以使用下面的脚本进行转换。 import os import shutil impo…

vue+exceljs前端下载、导出xlsx文件

首先安装插件 npm install exceljs file-saver第一种 简单导出 //页面引入 import ExcelJS from exceljs; import {saveAs} from file-saver; export default {methods: { /** 导出操作 */async handleExportFun() {let that this// 获取当前年月日 用户下载xlsx的文件名称设…

pytest自动化测试框架详解

🍅 点击文末小卡片 ,免费获取软件测试全套资料,资料在手,涨薪更快 Pytest是一种基于Python编程语言的自动化测试框架,它提供了丰富的功能和灵活的扩展性,可以用于单元测试、集成测试、功能测试、端到端测试…

解决com.mysql.jdbc.NonRegisteringDriver内存泄漏问题

1. 问题背景 线上出现内存报警,通过dump文件,MAT分析,发现mysql-connector-java 有内存泄漏问题 2.问题分析 然后看大对象列表,NonRegisteringDriver 对象确实占内存比较多,里面村的数据库连接的虚引用占比较多 3.解…

Golang | Leetcode Golang题解之第547题身份数量

题目: 题解: func findCircleNum(isConnected [][]int) (ans int) {n : len(isConnected)parent : make([]int, n)for i : range parent {parent[i] i}var find func(int) intfind func(x int) int {if parent[x] ! x {parent[x] find(parent[x])}re…

CSS实现文字渐变效果

效果图: 代码: h1 {font-size: 100px;color:linear-gradient(gold,deeppink);background-image:linear-gradient( -gold, deeppink); /*春意盎然*///背景被裁剪成文字的前景色。background-clip:text;/*兼容内核版本较低的浏览器*/-webkit-background-c…

24/11/8 算法笔记 t-SNE降维算法

t-SNE算法的核心实现涉及几个关键步骤,主要包括概率分布的构建、梯度计算和优化。以下是这些步骤的简要说明: 1. **概率分布的构建**: - 在高维空间中,t-SNE使用高斯分布(Gaussian distribution)来构建…

企业微信-消息推送之微信客服-接收消息和事件

一:企微实现和企业间的微信客服消息接收和事件原理 新版企微主要通过2个阶段实,第一个:消息推送 概述 - 文档 - 企业微信开发者中心 ,第二个:微信客服 接收消息和事件 - 文档 - 企业微信开发者中心 二:代码…

Ascend Extension for PyTorch是个what?

1 Ascend Extension for PyTorch Ascend Extension for PyTorch 插件是基于昇腾的深度学习适配框架,使昇腾NPU可以支持PyTorch框架,为PyTorch框架的使用者提供昇腾AI处理器的超强算力。 项目源码地址请参见Ascend/Pytorch。 昇腾为基于昇腾处理器和软…

【React】React 生命周期完全指南

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 React 生命周期完全指南一、生命周期概述二、生命周期的三个阶段2.1 挂载阶段&a…

开源模型应用落地-glm模型小试-glm-4-9b-chat-压力测试(六)

一、前言 GLM-4是智谱AI团队于2024年1月16日发布的基座大模型,旨在自动理解和规划用户的复杂指令,并能调用网页浏览器。其功能包括数据分析、图表创建、PPT生成等,支持128K的上下文窗口,使其在长文本处理和精度召回方面表现优异&a…

程序开发时单数复数及前缀的命名规范(目录名、文件名、函数名、变量名、数据库字段等)

在程序开发中,我总是被单复数搞得头疼,以前采用了最舒服的方法,一刀切:全部单数,因为理由也很简单,单数都可以作为定语解释,比如/util,可以认为真正的名称是/util files或者/util di…

Spring Boot原理全解析:如何让开发更轻松高效(二)-起步依赖、自动装配

通过这篇博客,读者将能够掌握 Spring Boot 中的配置优先级和 Bean 管理的核心原理,为开发更加高效、可维护的 Spring Boot 应用打下坚实的基础。 目录 前言 起步依赖 自动配置 概述 常见方案 概述 方案一 方案二 总结 前言 通过这篇博客&#xf…

力扣动态规划基础版(矩阵型)

62.不同路径(唯一路径问题) 62. 不同路径https://leetcode.cn/problems/unique-paths/ 方法一:动态规划 找状态转移方程,也就是说它从左上角走到右下角,只能往右或者往下走,那么设置一个位置为&#xff…

Ubuntu 22 安装 Apache Doris 3.0.3 笔记

Ubuntu 22 安装 Apache Doris 3.0.3 笔记 1. 环境准备 Doris 需要 Java 17 作为运行环境,所以首先需要安装 Java 17。 sudo apt-get install openjdk-17-jdk -y sudo update-alternatives --config java在安装 Java 17 后,可以通过 sudo update-alter…

141/142题环形链表

本题返回环入口的位置。使用快慢指针,快指针每次移动两个,慢指针每次移动一个。设前一段距离是a,进入环内到slow和fast相遇的地点距离是b,环内剩下的距离是c,如图所示。 环的长度是bc 慢指针移动距离是ab 快指针移动距离是abk(bc…

leetcode25:k个一组链表反转

给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。 k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。 你不能只是单纯的改变节点内部的值…

《今日制造与升级》是什么级别的期刊?是正规期刊吗?能评职称吗?

​问题解答 问:《今日制造与升级》是不是核心期刊? 答:不是,是知网收录的正规学术期刊。 问:《今日制造与升级》级别? 答:国家级。主管单位:中国机械工业联合会 …