是时候用开源降低AI落地门槛了

过去三十多年,从Linux到KVM,从OpenStack到Kubernetes,IT领域众多关键技术都来自开源。开源技术不仅大幅降低了IT成本,也降低了企业技术创新的门槛。

那么,在生成式AI时代,开源能够为AI带来什么?

红帽的答案是:开源技术将推动AI更快、更广泛的应用到各行各业中。

自1993年成立至今,红帽一直是坚定的开源技术布道者和构建者。透过不久前的2024红帽论坛,「智能进化论」看到了开源技术与AI碰撞的三大关键词:简单的AI、开源的AI、混合的AI。

简单的AI:从一台Laptop开启的企业AI应用之旅

2024年9月,AI 托管平台 Hugging Face 宣布其收录的 AI 模型数量已突破 100 万个,足以证明生成式AI与大模型的火爆。

但是从通用的基础模型,到解决不同企业实际业务问题之间,仍有不小的距离。算力、人才、模型训练平台和工具、技术经验都是大模型落地过程中的普遍痛点。比如:

“能不能让基础模型使用企业自己的数据,在我选择的环境里做调优,同时只需要花费相对较小的投入?”

“我们想基于基础模型开发适配自身业务的小模型,但是团队没有AI开发经验,没有开发平台,甚至没有足够的GPU算力资源怎么开始?”

正如过去数年间,红帽通过RHEL 和 OpenShift,将Linux 和容器技术加速普及一样,用开源的方式将AI引入企业,也是AI时代红帽的愿景。

为此,红帽推出了一系列AI平台和产品,组成了企业AI应用三步曲:

第一步,借助Podman Desktop和InstructLab,用户可以在最小资源配置下试用开源AI模型和工具,比如在笔记本电脑上用CPU试跑AI模型,而不需要额外的GPU卡。

过去,很多人认为AI模型的训练不可能在一台PC上完成,必须在配备GPU卡的大型数据中心完成。红帽彻底改变了这一现实,同时也让没有IT开发经验的数据科学家和业务人员都可以参与到AI模型训练中。

借助 Podman AI Lab 扩展包,Podman Desktop可以让用户在本地环境中构建、测试和运行基础模型。只需完成几个步骤即可设置试验环境,用来试用不同的基础模型。

InstructLab是一款用于基础模型对齐的开源工具,它可以帮你从开源社区把需要的基础模型下载到本地进行训练,并大幅降低了模型微调的数据准备和技术门槛。

第二步,通过Red Hat Enterprise Linux AI(RHEL AI),在云端服务器上进一步训练模型。

如果第一步测试效果满意,用户就可以在云端服务器上进行生产级的模型训练。

RHEL AI是一个基础模型平台,它使用户能够更加便捷地开发、测试和部署生成式AI模型。

RHEL AI中整合了IBM研究院的开源授权大模型Granite、模型对齐工具InstructLab,以及包括英伟达、英特尔和AMD的GPU加速器。该解决方案被封装成一个优化的、可启动的RHEL镜像,用于在混合云环境中部署单个服务器,并已集成到OpenShift AI中。

第三步,通过OpenShift AI,在更大规模的分布式集群中进行生产级别的模型训练和部署。

如果在前面两个环节中,模型都收获了满意的效果,就可以通过更大规模的分布式集群投入生产环境。

OpenShift AI是红帽的混合机器学习运营(MLOps)平台,能够在分布式集群环境中大规模运行模型和InstructLab,可以支撑大型团队完成ML Ops的工作流程。而且,OpenShift AI支持跨云混合部署,支持本地数据中心、私有云、公有云、混合云等多种环境。

在三步曲之外,红帽还推出了丰富的AI赋能产品,比如Red Hat Lightspeed通过集成生成式人工智能(GenAI),为初学者和专家提供更顺畅的工作体验。将Red Hat Lightspeed应用于RHEL AI、OpenShift AI,用户可以通过自然语言的方式管理操作系统、容器平台甚至集群。

开源的AI:用开源社区推动大模型迭代

“你可以随处选择运行 AI 的位置,而且它将基于开源。”在2024年5月的红帽全球峰会上,红帽CEO Matt Hicks曾这样表示。

可以说,开源开放的理念,贯穿了红帽所有的AI产品与战略。

InstructLab就是一个典型的例子。InstructLab既是模型对齐的工具,也是一个开源社区,它开创了一种通过开源社区推动开源模型持续进步的新模式。

“红帽设计InstructLab有两个主要目的:第一,让客户基于Granite基础模型,使用InstructLab和自身数据训练出符合需求的模型。第二,我们邀请用户更进一步,将知识和技能反馈至上游的开源社区,将其整合到社区版本的Granite模型中。因此,InstructLab是连接社区和客户的桥梁。”红帽大中华区解决方案架构部高级总监王慧慧表示。

同时,在推动AI落地方面,开放共创是红帽坚守的理念。

“在AI应用落地方面,红帽引入了‘开放实验室’的概念,与客户的顾问团队合作,针对企业的研发、生产、市场行销和客户支持等环节,一起找出最具效能的应用场景。从一个小应用成功起步,再逐步扩展至更大的场景。”红帽全球副总裁兼大中华区总裁曹衡康表示。

“关于AI最后一公里的落地,红帽今年加速了与本土ISV及方案开发商的合作,以满足不同行业和企业的个性化需求。”红帽大中华区资深市场总监赵文斌表示。

自今年5月发布全栈AI产品以来,红帽AI系列产品在国内市场加速落地。作为红帽AI产品的首批客户之一,国内某保险行业企业在引入红帽的AI产品后,其代码合并和审查的准确率大大提升,显著提升了开发效率与客户满意度。

“去年红帽大中华区业务创下了历史新高,今年也继续以双位数增长。我们的增长来自于越来越多的企业选择开源技术,认识到开源的优势。”曹衡康表示。

红帽全球副总裁兼大中华区总裁 曹衡康

混合的AI:企业发展自主AI的必然选择

云计算时代,企业根据不同的业务负载可以灵活选择裸金属、公有云、私有云、混合云、专属云等多种部署方式。

正如云是混合的,AI也是混合的。

随着生成式AI技术的不断成熟,越来越多企业意识到,没有一款基础模型可以做到一家独大。企业根据不同业务选择最适合的模型将成为一种趋势,多个业务场景对应多个模型将成为常态。

从这个层面看,生成式AI时代也是混合AI时代。自2013年发布开放混合云战略以来,这种跨开放混合云的能力正是红帽的优势所在,其也将在AI时代进一步延续。

红帽OpenShift 产品线经理佟一舟介绍了一个金融行业客户的案例。该企业在大模型出现之前就拥有丰富的ML小模型开发实力。然而在构建生成式AI研发、生产、实施平台的时候,该企业果断选择了红帽。

一方面,大模型时代构建AI平台的难度和复杂度与小模型时代不可同日而语。另一方面,在多模型的混合场景下,企业需要找到一个中立的AI平台作为合作伙伴,才能避免被单一厂商绑定的风险。

“很多客户希望AI平台企业能够稳定为他们提供未来10年的服务,而目前很多底层技术都来自开源技术。红帽30年的开源积淀,正是很多客户看中的关键优势。”佟一舟表示。

结语

在生成式AI的时代浪潮中,开源技术正以其独特的魅力和强大的推动力,为AI的广泛应用铺设了一条坚实的道路。

开源与AI的碰撞,不仅降低了AI落地的门槛,更让企业拥有了更多的自主权和选择空间。

文中图片来自摄图网

END

本文为「智能进化论」原创作品。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/911449.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

xlwings,让excel飞起来!

excel已经成为必不可少的数据处理软件,几乎天天在用。python有很多支持操作excel的第三方库,xlwings是其中一个。 关于xlwings xlwings开源免费,能够非常方便的读写Excel文件中的数据,并且能够进行单元格格式的修改。 xlwings还…

【分布式事务】二、NET8分布式事务实践: DotNetCore.CAP 框架 、 消息队列(RabbitMQ)、 数据库(MySql、MongoDB)

介绍 [CAP]是一个用来解决微服务或者分布式系统中分布式事务问题的一个开源项目解决方案, 同样可以用来作为 EventBus 使用 github地址:https://github.com/dotnetcore/CAP官网地址: https://cap.dotnetcore.xyz/官网文档:https://cap.dotnetcore.xyz/userguide/zh/cap/id…

【论文阅读】Learning dynamic alignment via meta-filter for few-shot learning

通过元滤波器学习动态对齐以实现小样本学习 引用:Xu C, Fu Y, Liu C, et al. Learning dynamic alignment via meta-filter for few-shot learning[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 5182-5191. 论文…

IDEA 2024使用mybatisplus插件生成代码在项目中

在IDEA 插件市场搜索“mybatisplus”插件并安装,安装好后重启IDEA,安装过程网上很多教程,这里略过;IDEA 2024配置数据库和生成代码迁移到了Tools菜单下,原先版本在Other; 先完成数据库配置,点击Config Data…

Android CCodec Codec2 (十九)C2LinearBlock

在上一篇文章的结尾,我们看到fetchLinearBlock方法最终创建了一个C2LinearBlock对象。这一节,我们将深入了解C2LinearBlock是什么,它的作用是什么,以及它是如何被创建的。 1、_C2BlockFactory 先对上一篇文章的结尾内容做简单回顾…

LabVIEW离心泵性能优化测试系统

开发了一套基于LabVIEW平台开发的离心泵性能优化测试系统。系统集成了数据采集、流量控制、数据存储、报表生成等功能,提供了低成本、便捷操作的解决方案,适用于工业场景中对离心泵性能的精确测评。 项目背景 随着工业化进程的加速,离心泵在…

【NLP自然语言处理】深入探索Self-Attention:自注意力机制详解

目录 🍔 Self-attention的特点 🍔 Self-attention中的归一化概述 🍔 softmax的梯度变化 3.1 softmax函数的输入分布是如何影响输出的 3.2 softmax函数在反向传播的过程中是如何梯度求导的 3.3 softmax函数出现梯度消失现象的原因 &…

MML 中使用 libevent +std::async unix socket domain 进程间通信

可以执行大量超时的接口,直到任务执行完成 还可以在一个事件做检测,funtcure 中的值为ready 状态 uds 的用法和tcp 类似,会维护一个链接状态和分配一个链接套接字,这就为异步执行提供了很方便的条件 客户端就安静的做一个计时,看是否在固定事件内返回执行…

基础算法练习--滑动窗口(已完结)

算法介绍 滑动窗口算法来自tcp协议的一种特性,它的高效使得其也变成了算法题的一种重要考点.滑动窗口的实现实际上也是通过两个指针前后遍历集合实现,但是因为它有固定的解题格式,我将其单独做成一个篇章. 滑动窗口的解题格式: 首先,定义两个指针left和right,与双指针不同的…

算法:只出现一次的数字II

题目 链接:leetcode链接 思路分析 这道题目其实是一个观察题,比较考察观察能力。 数组中只有一个元素只出现一次,其他的元素都出现三次 我们假设有n个元素出现三次 那么所有的元素的第i位的和加起来只有下面的四种情况 3n * 0 0 3n * 0…

【rust】rust基础代码案例

文章目录 代码篇HelloWorld斐波那契数列计算表达式(加减乘除)web接口 优化篇target/目录占用一个g,仅仅一个actix的helloWorld demo升级rust版本, 通过rustupcargo换源windows下放弃吧,需要额外安装1g的toolchain并且要…

鸿蒙基本组件结构

组件结构 1. 认识基本的组件结构 ArkTS通过装饰器Component 和Entry 装饰 struct 关键字声明的数据结构,构成一个自定义组件 自定义组件中提供了一个build函数,开发者需要在函数内以链式调用的方式进行基本的UI描述,UI描述的方法请参考UI描述…

Python并发编程库:Asyncio的异步编程实战

Python并发编程库:Asyncio的异步编程实战 在现代应用中,并发和高效的I/O处理是影响系统性能的关键因素之一。Python的asyncio库是专为异步编程设计的模块,提供了一种更加高效、易读的并发编程方式,适用于处理大量的I/O密集型任务…

快速开发工具 Vite

快速开发工具 vite 摘要: **概念:**Vite 是一种新型前端构建工具,能够显著提升前端开发体验 **构造:**Vite 主要由一个开发服务器和一套构建指令组成。 Vite底层的服务器转换和转发:以处理ts文件为例 1-读取 forma…

Servlet-Filter

文章目录 一. Filter 过滤器1. 概括2. 原理3. api配置过滤器(Filter)拦截路径1.xml 方式2.注解方式 4. 生命流程a.执行流程b.拦截路径c.过滤器链 5. 登录校验-Filter 一. Filter 过滤器 1. 概括 过滤器,顾名思义就是对事物进行过滤的,在 Web 中的过滤器…

Hadoop简介及单点伪分布式安装

目录 1. 大数据2. Hadoop简介3. Hadoop伪分布式安装4. Hadoop启动参考 1. 大数据 大数据的定义:一种规模大到在获取、存储、管理、分析方面大大超出传统数据库软件工具能力范围的数据集合。   特征:   1.海量的数据规模   2.快速的数据流转   3.…

python练习-袭击敌机

$ python -m pip install --user pygame1、画游戏框 class Settings:def __init__(self):self.screen_width 1200self.screen_height 800self.bg_color (230, 230, 230)import sys import pygame from settings import Settingsclass AlienInvasion:def __init__(self):pyg…

京东零售推荐系统可解释能力详解

作者:智能平台 张颖 本文导读 本文将介绍可解释能力在京东零售推荐系统中的应用实践。主要内容包括以下几大部分:推荐系统可解释定义、系统架构、排序可解释、模型可解释、流量可解释。 推荐系统可解释定义 推荐系统可解释的核心包括三部分&#xff0…

设备数据采集网关工作原理及优势-天拓四方

在日益智能化的时代,设备数据采集网关作为物联网系统中的关键组件,正扮演着越来越重要的角色。它不仅连接着各种设备,还负责数据的采集、处理与传输,为企业的数字化转型提供了坚实的基础。本文将详细探讨设备数据采集网关的定义、…

MLU运行SD3部署手册

文章目录 前言一、平台环境准备二、模型下载三、环境准备四.代码准备五.效果展示 前言 Stable Diffusion 3各版本模型在以下多个方面表现出色: 可定制性:轻松微调模型以满足特定创作需求,或根据定制的工作流程构建应用程序。 高效性能&#…