python opencv3

三、图像预处理2

1、图像滤波

        为图像滤波通过滤波器得到另一个图像。也就是加深图像之间的间隙,增强视觉效果;也可以模糊化间隙,造成图像的噪点被抹平。

2、卷积核

        在深度学习中,卷积核越大,看到的信息越多,提取的特征越好,同时计算量越大。

        卷积核一般为奇数,为了保证锚点处于中间。

3、图像平滑处理

        ‌图像噪声‌是指存在于图像数据中的不必要的或多余的干扰信息。它妨碍了人们通过视觉器官对接收信息的理解。噪声在理论上可以定义为“不可预测,只能用概率统计方法来认识的随机误差”。因此,将图像噪声看成是多维随机过程是合适的,描述噪声的方法可以借用随机过程的描述,即用其概率分布函数和概率密度分布函数。

3.1、高斯滤波

        高斯滤波是图像处理中常用的一种平滑滤波方法,其主要作用是去除图像中的噪声,并减少图像细节,以实现图像的平滑处理。

        cv2.GaussianBlur(src, ksize, sigmaX) :ksize:高斯核的大小,通常以元组 (width, height) 形式指定;sigmaX:高斯核在 x 方向上的标准差。

ksize = (11, 11)
sigma = 1
blurrred_image = cv2.GaussianBlur(img, ksize, sigma)

3.2、双边滤波

        通过考虑像素点的空间距离和灰度差异,实现了对图像进行平滑的同时,尽量保留图像的边缘细节。

        cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace) :d:滤波器的直径,用于指定在每个像素周围考虑的像素邻域大小,一般为正奇数;sigmaColor:颜色空间的标准差,用于控制滤波过程中颜色相似性的权重(较大时,在更大范围内进行平滑处理,导致图像细节的丢失较多 );sigmaSpace:坐标空间的标准差,用于控制滤波过程中空间相似性的权重(较大时,在更大的空间范围内进行平滑处理,导致图像的局部细节被进一步平滑 )。

c = 19
color = 3
space = 17
b_img = cv2.bilateralFilter(img, c, space, color)

3.3、中值 滤波

       因为椒盐噪声或脉冲噪声的灰度值通常远远偏离周围像素的灰度值,通过中值滤波可以有效地将这些异常值去除,从而使图像变得更加平滑。

       cv2.medianBlur(src, ksize) :ksize 是用于中值滤波的孔径大小,必须是大于1的奇数。

c = 5
m_img = cv2.medianBlur(img, c)

4、图像边缘检测

        Canny边缘检测

        cv2.Canny(image, threshold1, threshold2):threshold1: 第一个阈值,用于边缘检测的低阈值;threshold2: 第二个阈值,用于边缘检测的高阈值;返回检测到的边缘图像,边缘部分为白色,其他部分为黑色。

import cv2
image = cv2.imread("images/car.png")
# 从BGR到灰度图像
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Canny
edges = cv2.Canny(image, 200, 300)
cv2.imshow('边缘检测', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

5、图像形态学操作

        主要用于提取图像中的有用特征,如边界检测、噪声去除等;常见的形态学操作包括腐蚀、膨胀、开运算、闭运算、梯度、顶帽和黑帽等

5.1、腐蚀

        减少图像中白色区域的大小,常用于消除小的白色噪声点。

        eroded = cv2.erode(src, kernel, dst,iterations=1):kernel: 结构元素,用于定义腐蚀操作的方式,是一个矩阵结构数据;dst (可选): 输出图像,默认自动创建一个新的图像;iterations (可选): 腐蚀操作的迭代次数,默认为1。

k = np.ones((5, 5), np.uint8)
num = 2
e_img = cv2.erode(img, k, iterations=num)

5.2、膨胀

       与腐蚀相反,它会增加图像中白色区域的大小。

        dilated = cv2.dilate(src, kernel, iterations=1)

5.3、开运算

        先腐蚀后膨胀的过程,常用于去除小的物体、平滑较大的物体边界以及填充细长的突出部分。

        cv2.morphologyEx(img, cv2.MORPH_OPEN,kernel)

5.4、闭运算

        先膨胀后腐蚀的过程,常用于填充前景物体中的小洞, 平滑较大物体的边界以及连接邻近的物体。

        cv2.morphologyEx(img, cv2.MORPH_CLOSE,kernel)

5.5、形态学梯度

        计算膨胀后的图像与腐蚀后的图像之间的差值,突出物体的边缘。

        cv2.morphologyEx(src, cv2.MORPH_GRADIENT, kernel)

5.6、顶帽

        原图像与开运算结果的差值,用于获取图像中的亮细节。

        cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)

5.7、黑帽

        闭运算结果与原图像的差值,用于获取图像中的暗细节。

        cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/911125.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据库管理-第258期 23ai:Oracle Data Redaction(20241104)

数据库管理258期 2024-11-04 数据库管理-第258期 23ai:Oracle Data Redaction(20241104)1 简介2 应用场景与有点3 多租户环境4 特性与能力4.1 全数据编校4.2 部分编校4.3 正则表达式编校4.4 随机编校4.5 空值编校4.6 无编校4.7 不同数据类型上…

Kettle——CSV文件转换成excel文件输出

1.点击—文件—新建—转换 拖入两个组件: 按shift+鼠标左击建立连接,并点击主输出步骤, 点击CSV文件输入,选择浏览的csv文件,然后点击确定 同样,Excel也同上,只是要删除这个xls 并…

【数据集】【YOLO】【目标检测】火情、烟雾、火灾检测数据集 9848 张,YOLO火灾检测算法实战训练教程!

数据集介绍 【数据集】火情、烟火、火灾检测数据集 9848 张,目标检测,包含YOLO/VOC格式标注。 数据集中包含2种分类:{0: Fire, 1: Smoke},分别是‘火焰’和‘烟雾’。 数据集来自国内外图片网站和视频截图; 可用于…

Python酷库之旅-第三方库Pandas(202)

目录 一、用法精讲 941、pandas.CategoricalIndex.set_categories方法 941-1、语法 941-2、参数 941-3、功能 941-4、返回值 941-5、说明 941-6、用法 941-6-1、数据准备 941-6-2、代码示例 941-6-3、结果输出 942、pandas.CategoricalIndex.as_ordered方法 942-1…

docker 拉取MySQL8.0镜像以及安装

目录 一、docker安装MySQL镜像 搜索images 拉取MySQL镜像 二、数据挂载 在/root/mysql/conf中创建 *.cnf 文件 创建容器,将数据,日志,配置文件映射到本机 检查MySQL是否启动成功: 三、DBeaver数据库连接 问题一、Public Key Retrieval is not allowed 问题…

Java多线程详解⑤(全程干货!!!)线程安全问题 || 锁 || synchronized

这里是Themberfue 在上一节的最后,我们讨论两个线程同时对一个变量累加所产生的现象 在这一节中,我们将更加详细地解释这个现象背后发生的原因以及该如何解决这样类似的现象 线程安全问题 public class Demo15 {private static int count 0;public …

如何使用RabbitMQ和Python实现广播消息

使用 RabbitMQ 和 Python 实现广播消息的过程涉及设置一个消息队列和多个消费者,以便接收相同的消息。RabbitMQ 的 “fanout” 交换机允许你将消息广播到所有绑定的队列。以下是如何实现这一过程的详细步骤。 1、问题背景 在将系统从Morbid迁移到RabbitMQ时&#x…

【RabbitMQ】04-发送者可靠性

1. 生产者重试机制 spring:rabbitmq:connection-timeout: 1s # 设置MQ的连接超时时间template:retry:enabled: true # 开启超时重试机制initial-interval: 1000ms # 失败后的初始等待时间multiplier: 1 # 失败后下次的等待时长倍数,下次等待时长 initial-interval…

java的类加载机制的学习

一、类加载的过程 一个类被加载到虚拟机内存中开始,到卸载出虚拟机内存为止,整个生命周期分为七个阶段,分别是加载、验证、准备、解析、初始化、使用和卸载。其中验证、准备和解析这三个阶段统称为连接。 除去使用和卸载,就是Ja…

uni-app跨域set-cookie

set-cookie的值是作为一个权限控制的 首先,无论什么接口都会返回一个set-cookie,但未登录时,set-cookie是没有任何权限的 其次,登录接口请求时会修改set-cookie,并且在后续其他接口发起请求时,会在请求头…

让智能体—“正念365”陪你一起“养心”

佛学的“八正道”中,笔者个人观点,“正念”是最适合当代人低门槛练习的一个,因为不需要阅读大量的知识来理解概念,只需要保持对当下的觉察,发现分心了,就不带评价的把注意力拉回到当前的事情上就好。就是佛…

浅析Android Handler机制实现原理

0. 背景描述 Android系统出于对简单、高效的考虑,在设计UI体系时采用了单线程模型,即不会在多个线程中对同一个UI界面执行操作。简单是指单线程模型可以不用考虑和处理在多线程环境下操作UI带来的线程安全问题,高效是指单线程模型下无需通过…

vue 3:监听器

目录 1. 基本概念 2. 侦听数据源类型 1. 监听getter函数 2. 监听 ref 或 reactive 的引用 3. 多个来源组成的数组 4. 避免直接传递值!!! 3. 深层侦听器 4. 立即回调的侦听器 5. 一次性侦听器 6. watchEffect() 7. 暂停、恢复和停止…

沉浸式学习新体验:3D虚拟展厅如何重塑教育格局!

3D虚拟展厅对于教育行业产生了深远的影响,主要体现在以下几个方面: 一、创新教学方式 3D虚拟展厅利用三维技术构建的虚拟展示空间,为教育行业带来了一种全新的教学方式。传统的教学方式往往局限于书本和课堂,而3D虚拟展厅则能够…

【Kafka】Windows+KRaft部署指南

【Kafka】WindowsKRaft部署指南 摘要本地环境说明官网快速开始修改config/kraft/server.properties初始化数据存储目录启动 测试创建topic创建生产者创建消费者 FAQ输入行太长。命令语法不正确。问题描述解决方案 参考资料 摘要 Kafka是一种高吞吐量的分布式发布订阅消息系统&…

面相小白的php反序列化漏洞原理剖析

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文整理反序列化漏洞的一些成因原理 建议学习反序列化之前 先对php基础语法与面向对象有个大体的了解 (我觉得我整理的比较细致,了解这俩是个啥就行) 漏洞实战情况 这个漏洞黑盒几乎不会被发现&am…

景联文科技专业数据标注公司:高质量数据标注推动AI产业发展

在当今数据驱动的时代,高质量的数据标注对于机器学习、自然语言处理(NLP)和计算机视觉等技术领域的发展起着至关重要的作用。 数据标注是指对原始数据进行处理,标记对象的特征,生成满足机器学习训练要求的可读数据编码…

yelp数据集上识别潜在的热门商家

yelp数据集是研究B2C业态的一个很好的数据集,要识别潜在的热门商家是一个多维度的分析过程,涉及用户行为、商家特征和社区结构等多个因素。从yelp数据集里我们可以挖掘到下面信息有助于识别热门商家 用户评分和评论分析 评分均值: 商家的平均评分是反映其…

YOLO11改进 | 融合改进 | C3k2融合ContextGuided 【独家改进, 两种方式】

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 本文给大家带来的教程是将YOLO11的C3k2替…

【harbor】离线安装2.9.0-arm64架构服务制作和升级部署

harbor官网地址:Harbor 参考文档可以看这里:部署 harbor 2.10.1 arm64 - 简书。 前提环境准备: 安装docker 和 docker-compose 先拉arm64架构的harbor相关镜像 docker pull --platformlinux/arm64 ghcr.io/octohelm/harbor/harbor-regist…