YOLO11改进 | 融合改进 | C3k2融合ContextGuided 【独家改进, 两种方式】

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


本文给大家带来的教程是将YOLO11的C3k2替换为融合结构来提取特征。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。 

专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

目录

1.论文

2. C3k2_ContextGuided代码实现

2.1 将C3k2_ContextGuided添加到YOLO11中

2.2 更改init.py文件

2.3 添加yaml文件

2.4 在task.py中进行注册

2.5 执行程序

3.修改后的网络结构图

4. 完整代码分享

5. GFLOPs

6. 进阶

7.总结


1.论文

论文地址:CGNet: A Light-weight Context Guided Network for Semantic Segmentation——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

2. C3k2_ContextGuided代码实现

2.1 将C3k2_ContextGuided添加到YOLO11中

关键步骤一:在ultralytics\ultralytics\nn\modules下面新建文件夹models,在文件夹下新建C3k2_ContextGuided.py,粘贴下面代码

from torch import nn
import torch
from ultralytics.nn.modules.conv import Conv, autopad


class FGlo(nn.Module):
    """
    the FGlo class is employed to refine the joint feature of both local feature and surrounding context.
    """
    def __init__(self, channel, reduction=16):
        super(FGlo, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
                nn.Linear(channel, channel // reduction),
                nn.ReLU(inplace=True),
                nn.Linear(channel // reduction, channel),
                nn.Sigmoid()
        )
 
    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y
 
class ContextGuidedBlock(nn.Module):
    def __init__(self, nIn, nOut, dilation_rate=2, reduction=16, add=True):
        """
        args:
           nIn: number of input channels
           nOut: number of output channels, 
           add: if true, residual learning
        """
        super().__init__()
        n= int(nOut/2)
        self.conv1x1 = Conv(nIn, n, 1, 1)  #1x1 Conv is employed to reduce the computation
        self.F_loc = nn.Conv2d(n, n, 3, padding=1, groups=n)
        self.F_sur = nn.Conv2d(n, n, 3, padding=autopad(3, None, dilation_rate), dilation=dilation_rate, groups=n) # surrounding context
        self.bn_act = nn.Sequential(
            nn.BatchNorm2d(nOut),
            Conv.default_act
        )
        self.add = add
        self.F_glo= FGlo(nOut, reduction)
 
    def forward(self, input):
        output = self.conv1x1(input)
        loc = self.F_loc(output)
        sur = self.F_sur(output)
        
        joi_feat = torch.cat([loc, sur], 1) 
 
        joi_feat = self.bn_act(joi_feat)
 
        output = self.F_glo(joi_feat)  #F_glo is employed to refine the joint feature
        # if residual version
        if self.add:
            output  = input + output
        return output
 
class ContextGuidedBlock_Down(nn.Module):
    """
    the size of feature map divided 2, (H,W,C)---->(H/2, W/2, 2C)
    """
    def __init__(self, nIn, dilation_rate=2, reduction=16):
        """
        args:
           nIn: the channel of input feature map
           nOut: the channel of output feature map, and nOut=2*nIn
        """
        super().__init__()
        nOut = 2 * nIn
        self.conv1x1 = Conv(nIn, nOut, 3, s=2)  #  size/2, channel: nIn--->nOut
        
        self.F_loc = nn.Conv2d(nOut, nOut, 3, padding=1, groups=nOut)
        self.F_sur = nn.Conv2d(nOut, nOut, 3, padding=autopad(3, None, dilation_rate), dilation=dilation_rate, groups=nOut) 
        
        self.bn = nn.BatchNorm2d(2 * nOut, eps=1e-3)
        self.act = Conv.default_act
        self.reduce = Conv(2 * nOut, nOut,1,1)  #reduce dimension: 2*nOut--->nOut
        
        self.F_glo = FGlo(nOut, reduction)    
 
    def forward(self, input):
        output = self.conv1x1(input)
        loc = self.F_loc(output)
        sur = self.F_sur(output)
 
        joi_feat = torch.cat([loc, sur],1)  #  the joint feature
        joi_feat = self.bn(joi_feat)
        joi_feat = self.act(joi_feat)
        joi_feat = self.reduce(joi_feat)     #channel= nOut
        
        output = self.F_glo(joi_feat)  # F_glo is employed to refine the joint feature



class Bottleneck(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = Conv(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """Applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
    
class C2f(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

class C3k2(C2f):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
        """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(
            C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
        )

class C3(nn.Module):
    """CSP Bottleneck with 3 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))

    def forward(self, x):
        """Forward pass through the CSP bottleneck with 2 convolutions."""
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

class C3k(C3):
    """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
        """Initializes the C3k module with specified channels, number of layers, and configurations."""
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))

class C3k2_ContextGuided(nn.Module):

    def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True, reduction=16, dilation_rate=2):
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)
        
        # Use ContextGuidedBlock instead of some Bottleneck layers
        self.m = nn.ModuleList(
            ContextGuidedBlock(self.c, self.c, dilation_rate=dilation_rate, reduction=reduction, add=shortcut) 
            if i % 2 == 0 else 
            (C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g)) 
            for i in range(n)
        )

    def forward(self, x):
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

class C3k2_FGlo(nn.Module):
    def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True, reduction=16):
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)
        
        # 创建 Bottleneck 或 C3k 层
        self.m = nn.ModuleList(
            C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g)
            for _ in range(n)
        )
        
        # 增加 FGlo 全局上下文模块
        self.fglo = FGlo(c2, reduction)

    def forward(self, x):
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        
        # 融合 Bottleneck 或 C3k 输出
        output = self.cv2(torch.cat(y, 1))
        
        # 应用 FGlo 进行全局上下文融合
        output = self.fglo(output)
        
        return output

2.2 更改init.py文件

关键步骤二:在文件ultralytics\ultralytics\nn\modules\models文件夹下新建__init__.py文件,先导入函数

然后在下面的__all__中声明函数

2.3 添加yaml文件

关键步骤三:在/ultralytics/ultralytics/cfg/models/11下面新建文件yolo11_C3k2_ContextGuided.yaml文件,粘贴下面的内容【C3k2_FGlo直接替换C3k2_DWR即可,我不重复写yaml文件了

  • 目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2_ContextGuided, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2_ContextGuided, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2_ContextGuided, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2_ContextGuided, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
  • 语义分割
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2_ContextGuided, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2_ContextGuided, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2_ContextGuided, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2_ContextGuided, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
  • 旋转目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2_ContextGuided, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2_ContextGuided, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2_ContextGuided, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2_ContextGuided, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, OBB, [nc, 1]] # OBB(P3, P4, P5)

温馨提示:本文只是对yolo11基础上添加模块,如果要对yolo11n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple


# YOLO11n
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channel:1024
 
# YOLO11s
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channel:1024
 
# YOLO11m
depth_multiple: 0.50  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512
 
# YOLO11l 
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512 
 
# YOLO11x
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.50 # layer channel multiple
max_channel:512

2.4 在task.py中进行注册

关键步骤四:在parse_model函数中进行注册,添加C3k2_ContextGuided

先在task.py导入函数

然后在task.py文件下找到parse_model这个函数,如下图,添加C3k2_ContextGuided

1.

2.

2.5 执行程序

关键步骤五: 在ultralytics文件中新建train.py,将model的参数路径设置为yolo11_C3k2_ContextGuided.yaml的路径即可 【注意是在外边的Ultralytics下新建train.py】

from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Path
 
if __name__ == '__main__':
 
 
    # 加载模型
    model = YOLO("ultralytics/cfg/11/yolo11.yaml")  # 你要选择的模型yaml文件地址
    # Use the model
    results = model.train(data=r"你的数据集的yaml文件地址",
                          epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem)  # 训练模型

   🚀运行程序,如果出现下面的内容则说明添加成功🚀  

                   from  n    params  module                                                arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv                      [3, 16, 3, 2]
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv                      [16, 32, 3, 2]
  2                  -1  1      6640  ultralytics.nn.modules.block.C3k2                     [32, 64, 1, False, 0.25]
  3                  -1  1     36992  ultralytics.nn.modules.conv.Conv                      [64, 64, 3, 2]
  4                  -1  1     26080  ultralytics.nn.modules.block.C3k2                     [64, 128, 1, False, 0.25]     
  5                  -1  1    147712  ultralytics.nn.modules.conv.Conv                      [128, 128, 3, 2]
  6                  -1  1     87040  ultralytics.nn.modules.block.C3k2                     [128, 128, 1, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv                      [128, 256, 3, 2]
  8                  -1  1    346112  ultralytics.nn.modules.block.C3k2                     [256, 256, 1, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF                     [256, 256, 5]
 10                  -1  1    249728  ultralytics.nn.modules.block.C2PSA                    [256, 256, 1]
 11                  -1  1         0  torch.nn.modules.upsampling.Upsample                  [None, 2, 'nearest']
 12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat                    [1]
 13                  -1  1     77700  ultralytics.nn.modules.models.C3k2_ContextGuided.C3k2_ContextGuided[384, 128, 1, False]
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample                  [None, 2, 'nearest']
 15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat                    [1]
 16                  -1  1     23874  ultralytics.nn.modules.models.C3k2_ContextGuided.C3k2_ContextGuided[256, 64, 1, False]
 17                  -1  1     36992  ultralytics.nn.modules.conv.Conv                      [64, 64, 3, 2]
 18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat                    [1]
 19                  -1  1     53124  ultralytics.nn.modules.models.C3k2_ContextGuided.C3k2_ContextGuided[192, 128, 1, False]
 20                  -1  1    147712  ultralytics.nn.modules.conv.Conv                      [128, 128, 3, 2]
 21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat                    [1]
 22                  -1  1    209672  ultralytics.nn.modules.models.C3k2_ContextGuided.C3k2_ContextGuided[384, 256, 1, True]
 23        [16, 19, 22]  1    464912  ultralytics.nn.modules.head.Detect                    [80, [64, 128, 256]]
YOLO11_C3k2_ContextGuided summary: 333 layers, 2,379,458 parameters, 2,379,442 gradients, 6.2 GFLOPs

3.修改后的网络结构图

4. 完整代码分享

主页侧边获取

5. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLO11n GFLOPs

改进后的GFLOPs

6. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

7.总结

通过以上的改进方法,我们成功提升了模型的表现。这只是一个开始,未来还有更多优化和技术深挖的空间。在这里,我想隆重向大家推荐我的专栏——<专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅>。这个专栏专注于前沿的深度学习技术,特别是目标检测领域的最新进展,不仅包含对YOLO11的深入解析和改进策略,还会定期更新来自各大顶会(如CVPR、NeurIPS等)的论文复现和实战分享。

为什么订阅我的专栏? ——专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

  1. 前沿技术解读:专栏不仅限于YOLO系列的改进,还会涵盖各类主流与新兴网络的最新研究成果,帮助你紧跟技术潮流。

  2. 详尽的实践分享:所有内容实践性也极强。每次更新都会附带代码和具体的改进步骤,保证每位读者都能迅速上手。

  3. 问题互动与答疑:订阅我的专栏后,你将可以随时向我提问,获取及时的答疑

  4. 实时更新,紧跟行业动态:不定期发布来自全球顶会的最新研究方向和复现实验报告,让你时刻走在技术前沿。

专栏适合人群:

  • 对目标检测、YOLO系列网络有深厚兴趣的同学

  • 希望在用YOLO算法写论文的同学

  • 对YOLO算法感兴趣的同学等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/911097.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【harbor】离线安装2.9.0-arm64架构服务制作和升级部署

harbor官网地址&#xff1a;Harbor 参考文档可以看这里&#xff1a;部署 harbor 2.10.1 arm64 - 简书。 前提环境准备&#xff1a; 安装docker 和 docker-compose 先拉arm64架构的harbor相关镜像 docker pull --platformlinux/arm64 ghcr.io/octohelm/harbor/harbor-regist…

InfluxDB 2 关闭pprof

背景&#xff1a; Go 语言的 net/http/pprgf包如未配置正确暴露在公网容易引起敏感信息泄漏问题&#xff0c;导致源码等信息泄漏。 influxdb 2 默认是开启pprof的 使用 localhost:8086/debug/pprof/goroutine?debug1 可以看到接口暴露的信息 如何关闭pprof 官方文档&…

CJ/T188-2004 详细介绍

REDISANT 提供互联网与物联网开发测试套件 # 互联网与中间件&#xff1a; Redis AssistantZooKeeper AssistantKafka AssistantRocketMQ AssistantRabbitMQ AssistantPulsar AssistantHBase AssistantNoSql AssistantEtcd AssistantGarnet Assistant 工业与物联网&#xff1…

阿里云k8s-master部署CNI网络插件遇到的问题

问题 按照网络上的部署方法 cd /opt/k8s # 下载 calico-kube-controllers配置文件&#xff0c;可能会网络超时 curl https://docs.projectcalico.org/manifests/calico.yaml -O kubectl apply -f calico.yaml 试了很多次都不行&#xff0c;k8s-master都是Not ready的状态 ca…

Netty篇(学习前言)

目录 一、为什么使用Netty 1. Netty编程相比NIO编程的优势 2. Netty 相比其它网络应用框架的优势 二、让我们走进Netty 1. 简介 2. 设计目标 3. 主要特点 4. Netty的作者 5. Netty 的地位 6. Netty 的优势 五、Netty版本说明 六、Netty架构设计 1. 线程模型基本介绍…

C/C++使用AddressSanitizer检测内存错误

AddressSanitizer 是一种内存错误检测工具&#xff0c;编译时添加 -fsanitizeaddress 选项可以在运行时检测出非法内存访问&#xff0c;当发生段错误时&#xff0c;AddressSanitizer 会输出详细的错误报告&#xff0c;包括出错位置的代码行号和调用栈&#xff0c;有助于快速定位…

JavaScript基础语法部分-黑马跟课笔记

一、Javascript介绍 1.JavaScript是什么&#xff1f; 1.是什么&#xff1f; 是一种运行在客户端&#xff08;浏览器&#xff09;的编程语言&#xff0c;实现人机交互效果 2.作用&#xff08;做什么&#xff1f;&#xff09; 网页特效&#xff08;监听用户的一些行为让网页做…

【MongoDB】MongoDB的Java API及Spring集成(Spring Data)

文章目录 Java APISpring 集成1. 添加依赖2. 配置 MongoDB3. 创建实体类4. 创建 Repository 接口5. 创建 Service 类6. 创建 Controller 类7. 启动 Spring Boot 应用8. 测试你的 API 更多相关内容可查看 Java API maven <dependency><groupId>org.mongodb</gr…

非线性关卡设计

【GDC】如何设计完全非线性的单人关卡_DOOM (bilibili.com) 本文章算是此视频的简单笔记&#xff0c;更详细还请看视频 设计完全非线性关卡强调自由移动和沙盒式玩法&#xff0c;鼓励玩家进行不可预测的移动和空间探索。讲解者分享了设计此类关卡的具体步骤&#xff0c;包括明…

(蓝桥杯C/C++)——基础算法(下)

目录 一、时空复杂度 1.时间复杂度 2.空间复杂度 3.分析技巧 4.代码示例 二、递归 1.递归的介绍 2.递归如何实现 3.递归和循环的比较 4.代码示例 三、差分 1.差分的原理和特点 2.差分的实现 3.例题讲解 四、枚举 1.枚举算法介绍 2.解空间的类型 3. 循环枚举解…

神经网络基础--什么是正向传播??什么是方向传播??

前言 本专栏更新神经网络的一些基础知识&#xff1b;这个是本人初学神经网络做的笔记&#xff0c;仅仅堆正向传播、方向传播就行了了一个讲解&#xff0c;更加系统的讲解&#xff0c;本人后面会更新《李沐动手学习深度学习》&#xff0c;会更有详细讲解;案例代码基于pytorch&a…

代码随想录算法训练营第三十七天 | 完全背包 518.零钱兑换 Ⅱ 377.组合总和Ⅳ 70.爬楼梯(进阶版)

完全背包&#xff1a; 文章链接 题目链接&#xff1a;卡码网 52.携带研究材料 与01背包的区别在于物品数量无限&#xff0c;因此同一种物品可以取多次。 递推式如下&#xff1a; 二维&#xff1a;dp[i][j] max(dp[i - 1][j], dp[i][j - weights[i]] value[i])&#xff0c;因…

C语言心型代码解析

方法一 心型极坐标方程 爱心代码你真的理解吗 笛卡尔的心型公式&#xff1a; for (y 1.5; y > -1.5; y - 0.1) for (x -1.5; x < 1.5; x 0.05) 代码里面用了二个for循环&#xff0c;第一个代表y轴&#xff0c;第二个代表x轴 二个增加的单位不同&#xff0c;能使得…

C语言网络编程 -- TCP/iP协议

一、Socket简介 1.1 什么是socket socket通常也称作"套接字"&#xff0c;⽤于描述IP地址和端⼝&#xff0c;是⼀个通信链的句柄&#xff0c;应⽤ 程序通常通过"套接字"向⽹络发出请求或者应答⽹络请求。⽹络通信就是两个进程 间的通信&#xff0c;这两个进…

字符串接龙 /单词接龙 (BFs C#

卡码网 110和 力扣127 和LCq 108题都是一个解法 这两道题乍一看在结果处可能不一样 力扣要求 字符串里边必须包含对应的最后一个字符 而110不需要最后一个字符 但是在实验逻辑上是一致的 只是110需要把如果在set中找不到最后一个字符就直接返回0的逻辑删去 就可以了 这就是…

Transformer和BERT的区别

Transformer和BERT的区别比较表&#xff1a; 两者的位置编码&#xff1a; 为什么要对位置进行编码&#xff1f; Attention提取特征的时候&#xff0c;可以获取全局每个词对之间的关系&#xff0c;但是并没有显式保留时序信息&#xff0c;或者说位置信息。就算打乱序列中token…

python操作MySQL以及SQL综合案例

1.基础使用 学习目标&#xff1a;掌握python执行SQL语句操作MySQL数据库软件 打开cmd下载安装 安装成功 connection就是一个类&#xff0c;conn类对象。 因为位置不知道&#xff0c;所以使用关键字传参。 表明我们可以正常连接到MySQL 演示、执行非查询性质的SQL语句 pytho…

【报告PDF附下载】2024人工智能大模型技术财务应用蓝皮书

《人工智能大模型技术财务应用蓝皮书》 是一本探讨AI大模型技术在财务管理领域应用的权威指南。书中不仅概述了人工智能大模型技术的发展历程、典型特征和未来趋势&#xff0c;还详细介绍了它的体系架构和在财务领域的应用情况。 书中通过家用电器制造、银行、汽车企业、基础设…

快速上手vue3+js+Node.js

安装Navicat Premium Navicat Premium 创建一个空的文件夹&#xff08;用于配置node&#xff09; 生成pakeage.json文件 npm init -y 操作mysql npm i mysql2.18.1 安装express搭建web服务器 npm i express4.17.1安装cors解决跨域问题 npm i cors2.8.5创建app.js con…

【Python爬虫实战】DrissionPage 与 ChromiumPage:高效网页自动化与数据抓取的双利器

&#x1f308;个人主页&#xff1a;易辰君-CSDN博客 &#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/2401_86688088/category_12797772.html ​ 目录 前言 一、DrissionPage简介 &#xff08;一&#xff09;特点 &#xff08;二&#xff09;安装 &#xff08;三…