<项目代码>YOLOv8 煤矸石识别<目标检测>

  YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的文章<数据集>煤矸石识别数据集<目标检测>。

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在runs目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 results.png

3.5 F1_curve

3.6 confusion_matrix

3.7 confusion_matrix_normalized

3.8 验证 batch

标签:

预测结果:

3.9 识别效果图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/905624.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

论文速读:完全测试时域适应(Test-time Adaptation)目标检测(CVPR2024)

原文标题:Fully Test-time Adaptation for Object Detection 中文标题:完全测试时间适应目标检测 通过百度网盘分享的文件:Fully_Test-time_Adaptation_for_Obje... 链接: 百度网盘 请输入提取码 提取码:yrvz 代码地址…

深度学习:卷积神经网络中的im2col

im2col 是一种在卷积神经网络(CNN)中常用的技术,用于将输入图像数据转换为适合卷积操作的矩阵形式。通过这种转换,卷积操作可以被高效地实现为矩阵乘法,从而加速计算。 在传统的卷积操作中,卷积核&#xff…

深度学习模型入门教程指南

在当前的人工智能生成内容(AIGC)领域中,深度学习模型无疑是支撑其技术核心的关键组件。深度学习模型的广泛应用极大地推动了图像生成、自然语言处理和自动化工作流的发展,本文将从多个角度介绍深度学习模型的概念、构建过程、实际…

计算机网络:网络层 —— IPv4 数据报的首部格式

文章目录 IPv4数据报的首部格式IPv4数据报分片生存时间 TTL字段协议字段首部检验和字段 IPv4数据报的首部格式 IPv4 数据报的首部格式及其内容是实现 IPv4 协议各种功能的基础。 在 TCP/IP 标准中,各种数据格式常常以32比特(即4字节)为单位来描述 固定部分&#x…

Java_Springboot核心配置详解

Spring Boot以其简洁、高效和约定优于配置的理念,极大地简化了Java应用的开发流程。在Spring Boot中,核心配置是应用启动和运行的基础。本文将详细介绍Spring Boot中的两种配置文件格式、基础注解的配置方式、自定义配置以及多环境配置。 一、Spring Bo…

【GESP】C++一级知识点研究,cout和printf性能差异分析

一道简单循环输出练习题(BCQM3148,循环输出),由于cout的代码超时问题,让我注意到二者在使用上的差异,遂查阅研究如下。 全文详见:https://www.coderli.com/gesp-knowledge-cout-printf/【GESP】C一级知识点研究&#…

【网络安全】揭示 Web 缓存污染与欺骗漏洞

未经许可,不得转载。 文章目录 前言污染与欺骗Web 缓存污染 DoS1、HTTP 头部超大 (HHO)2、HTTP 元字符 (HMC)3、HTTP 方法覆盖攻击 (HMO)4、未键入端口5、重定向 DoS6、未键入头部7、Host 头部大小写规范化8、路径规范化9、无效头部 CP-DoS10、HTTP 请求拆分Web 缓存污染与有害…

《数字图像处理基础》学习03-图像的采样

在之前的学习中我已经知道了图像的分类:物理图像和虚拟图像。《数字图像处理基础》学习01-数字图像处理的相关基础知识_图像处理 数字-CSDN博客 目录 一,连续图像和离散图像的概念 二,图像的采样 1, 不同采样频率采样同一张图…

微服务实战系列之玩转Docker(十七)

导览 前言Q:如何实现etcd数据的可视化管理一、创建etcd集群1. 节点定义2. 集群成员2.1 docker ps2.2 docker exec2.3 etcdctl member list 二、发布数据1. 添加数据2. 数据共享 三、可视化管理1. ETCD Keeper入门1.1 简介1.2 安装1.2.1 定义compose.yml1.2.2 启动ke…

MobileNetv2网络详解

背景: MobileNet v1中DW卷积在训练完之后部分卷积核会废掉,大部分参数为“0” MobileNet v2网络是由Google团队在2018年提出的,相比于MobileNet v1网络,准确率更高,模型更小 网络亮点: Inverted Residu…

巨好看的登录注册界面源码

展示效果 源码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content"IEedge" /><meta name"viewport" content"widthdevic…

机械臂建模之DH表

本文配图 取自哔哩哔哩机器人学视频 林沛群老师的PPT 机械臂几何直观描述 首先要知道DH表中四个参数的含义&#xff1a; 对于 a 、 α 、 d 、 θ i a、 \alpha 、 d 、 \theta_i a、α、d、θi​ 四个参数&#xff0c;上图采用MDH的方式&#xff0c;对于一个轴的这四个参数&a…

Flink CDC系列之:学习理解核心概念——Data Pipeline

Flink CDC系列之&#xff1a;学习理解核心概念——Data Pipeline 数据管道sourcesink管道配置Table IDroutetransform案例 数据管道 由于 Flink CDC 中的事件以管道方式从上游流向下游&#xff0c;因此整个 ETL 任务被称为数据管道。 管道对应于 Flink 中的一系列操作。 要描…

Git 本地操作(2)

会以下操作就可以完成本地的版本控制了&#xff0c;就不需要再复制文件每次改一个东西就复制整个工程保存下来啦&#xff01; 建议先看上一篇文章噢 &#xff01;&#xff01;&#xff01; 一、新建项目git本地操作 1、初始化仓库 创建一个 project 文件夹&#xff0c;将需…

Python Requests 的高级使用技巧:应对复杂 HTTP 请求场景

介绍 网络爬虫&#xff08;Web Crawler&#xff09;是自动化的数据采集工具&#xff0c;用于从网络上提取所需的数据。然而&#xff0c;随着反爬虫技术的不断进步&#xff0c;很多网站增加了复杂的防护机制&#xff0c;使得数据采集变得更加困难。在这种情况下&#xff0c;Pyt…

Linux中NFS配置

文章目录 一、NFS介绍1.1、NFS的工作流程1.2、NFS主要涉及的软件包1.3、NFS的主要配置文件 二、安装NFS2.1、更新yum2.2、安装NFS服务2.3、配置NFS服务器2.4、启动NFS服务2.5、配置防火墙&#xff08;如果启用了防火墙&#xff0c;需要允许NFS相关的端口通过&#xff09;2.6、生…

MATLAB发票识别系统

课题介绍 该课题为基于MATLAB的发票识别系统。主要识别发票的编号。可定做发票的日期&#xff0c;金额等字段的识别。通过输入图片&#xff0c;校正&#xff0c;定位目标区域&#xff0c;分割&#xff0c;字符分割&#xff0c;模板匹配识别&#xff0c;得出结果。整个设计包含…

前端拖拽库方案之react-beautiful-dnd

近期&#xff0c;知名 React 拖拽库 react-beautiful-dnd 宣布了项目弃用的决定&#xff0c;未来将不再维护。这一决定源于其存在的缺陷与局限性&#xff0c;促使作者转向开发一个更加现代化的拖拽解决方案——Pragmatic drag and drop&#xff08;下面会介绍&#xff09;&…

Rust 力扣 - 643. 子数组最大平均数 I

文章目录 题目描述题解思路题解代码题解链接 题目描述 题解思路 我们遍历长度为k的窗口&#xff0c;我们只需要记录窗口内的最大和即可&#xff0c;遍历过程中刷新最大值 结果为窗口长度为k的最大和 除以 k 题解代码 impl Solution {pub fn find_max_average(nums: Vec<…