第T8周:猫狗识别

  • >- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
    >- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

🍺 要求:

  1. 了解model.train_on_batch()并运用
  2. 了解tqdm,并使用tqdm实现可视化进度条

🏡 我的环境:

  • 语言环境:Python3.6.5
  • 编译器:Jupyter Notebook
  • 深度学习环境:TensorFlow2.4.1

1. 设置GPU

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")

# 打印显卡信息,确认GPU可用
print(gpus)

[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

2. 导入数据

3. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中 

Found 3400 files belonging to 2 classes.
Using 2720 files for training.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

['cat', 'dog'] 

4.配置数据集

  • shuffle() : 打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
  • prefetch() :预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。
  • cache() :将数据集缓存到内存当中,加速运行

5.可视化数据

6.构建VG-16网络 

7.编译

model.compile(optimizer="adam",
              loss     ='sparse_categorical_crossentropy',
              metrics  =['accuracy'])

8.训练模型

from tqdm import tqdm
import tensorflow.keras.backend as K

epochs = 10
lr     = 1e-4

# 记录训练数据,方便后面的分析
history_train_loss     = []
history_train_accuracy = []
history_val_loss       = []
history_val_accuracy   = []

for epoch in range(epochs):
    train_total = len(train_ds)
    val_total   = len(val_ds)
    
    """
    total:预期的迭代数目
    ncols:控制进度条宽度
    mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)
    """
    with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=1,ncols=100) as pbar:
        
        lr = lr*0.92
        K.set_value(model.optimizer.lr, lr)

        for image,label in train_ds:   
            """
            训练模型,简单理解train_on_batch就是:它是比model.fit()更高级的一个用法

            想详细了解 train_on_batch 的同学,
            可以看看我的这篇文章:https://www.yuque.com/mingtian-fkmxf/hv4lcq/ztt4gy
            """
            history = model.train_on_batch(image,label)

            train_loss     = history[0]
            train_accuracy = history[1]
            
            pbar.set_postfix({"loss": "%.4f"%train_loss,
                              "accuracy":"%.4f"%train_accuracy,
                              "lr": K.get_value(model.optimizer.lr)})
            pbar.update(1)
        history_train_loss.append(train_loss)
        history_train_accuracy.append(train_accuracy)
            
    print('开始验证!')
    
    with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=0.3,ncols=100) as pbar:

        for image,label in val_ds:      
            
            history = model.test_on_batch(image,label)
            
            val_loss     = history[0]
            val_accuracy = history[1]
            
            pbar.set_postfix({"loss": "%.4f"%val_loss,
                              "accuracy":"%.4f"%val_accuracy})
            pbar.update(1)
        history_val_loss.append(val_loss)
        history_val_accuracy.append(val_accuracy)
            
    print('结束验证!')
    print("验证loss为:%.4f"%val_loss)
    print("验证准确率为:%.4f"%val_accuracy)

 9.总结

tqdm是一个快速、可扩展的Python进度条库,它提供了一种简单而直观的方式来跟踪代码的执行进度。tqdm的主要功能是在长时间运行的循环中添加一个进度提示信息。用户只需将任意的迭代器封装为tqdm(iterator),即可实现进度可视化,这非常适合在数据处理、机器学习训练等需要长时间运行的任务中使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/902703.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

离线电脑 Visual Studio Community 2017:您的许可证已过期

VS 2017社区版,打开后提示: “您的许可证已过期,必须进行更新。请确保已连接Internet,然后检查更新的许可证以继续使用本产品” 解决办法: (1)在另一台可以联网的电脑上,更新VS20…

8.Linux按键驱动-中断下半部

1.编程思路 1.1在gpio结构体中添加tasklet_struct结构体 1.2在probe函数中初始化tasklet结构体 1.3在中断服务程序中调度tasklet 1.4在这个函数中执行其它任务 2.代码: 应用程序和Makefile和上节一致 https://blog.csdn.net/weixin_40933496/article/details/1…

通过call指令来学习指令摘要表的细节

E8 cw cw 表示E8后面跟随2 字节 (什么数不知道) rel16 指在与指令同一代码段内的相对地址偏移 D ,指向Instruction Operand Encoding 表中的D列, 他告诉我们 操作数1 是一个0FFSET N.S. 在64位模式下,某些指令需要使用“地址覆盖前缀”(address over…

RL学习笔记-马尔可夫过程

参考资料:蘑菇书、周博磊老师课程 在强化学习中,智能体与环境交互是通过马尔可夫决策过程来表示的,因此马尔可夫决策过程是强化学习的基本框架。 马尔可夫性质 指一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件…

Golang | Leetcode Golang题解之第506题相对名次

题目: 题解: var desc [3]string{"Gold Medal", "Silver Medal", "Bronze Medal"}func findRelativeRanks(score []int) []string {n : len(score)type pair struct{ score, idx int }arr : make([]pair, n)for i, s : …

BERT语言模型详解【Encoder-Only】

NLP-大语言模型学习系列目录 一、注意力机制基础——RNN,Seq2Seq等基础知识 二、注意力机制【Self-Attention,自注意力模型】 三、Transformer图文详解【Attention is all you need】 四、大语言模型的Scaling Law【Power Low】 五、大语言模型微调方法详解【全量微调、PEFT、…

Android Studio 导入/删除/新建库的模块(第三方项目) - Module

文章目录 一、导入module项目 Module空项目如何导入Project工程项目二、删除module项目三、新建module项目(不常用) 一、导入module项目 首先,你必须要有一个工程(Project),才可以打开项目(Module) 第一步骤:右键项目依次点击 New -> Module 1、工…

LLM | 论文精读 | 基于大型语言模型的自主代理综述

论文标题:A Survey on Large Language Model based Autonomous Agents 作者:Lei Wang, Chen Ma, Xueyang Feng, 等 期刊:Frontiers of Computer Science, 2024 DOI:10.1007/s11704-024-40231-1 一、引言 自主代理(…

AI 提示词(Prompt)入门 :ChatGPT 4.0 高级功能指南

这段时间 GPT4 多了很多功能,今天主要是增加了 GPTs Store 的介绍和 创建 GPTs 的简单方法,那么我们开始吧,文末有彩蛋。 这里主要讲解如下几个点: 1: ChatGPT 4.0 插件的使用 2:ChatGPT 4.0 高级数据分…

【已解决】【hadoop】【hive】启动不成功 报错 无法与MySQL服务器建立连接 Hive连接到MetaStore失败 无法进入交互式执行环境

启动hive显示什么才是成功 当你成功启动Hive时,通常会看到一系列的日志信息输出到控制台,这些信息包括了Hive服务初始化的过程以及它与Metastore服务连接的情况等。一旦Hive完成启动并准备就绪,你将看到提示符(如 hive> &#…

大数据Azkaban(二):Azkaban简单介绍

文章目录 Azkaban简单介绍 一、Azkaban特点 二、Azkaban组成结构 三、Azkaban部署模式 1、solo-server ode(独立服务器模式) 2、two server mode(双服务器模式) 3、distributed multiple-executor mode(分布式多…

FPGA第 13 篇,使用 Xilinx Vivado 创建项目,点亮 LED 灯,Vivado 的基本使用(点亮ZYNQ-7010开发板的LED灯)

前言 在FPGA设计中,Xilinx Vivado软件是一款功能强大的设计工具,它不仅支持硬件描述语言(HDL)的开发,还提供了丰富的图形化设计界面,方便用户进行硬件设计、调试和测试。这里我们将详细介绍,如…

RabbitMQ 高级特性——事务

文章目录 前言事务配置事务管理器加上Transactional注解 前言 前面我们学习了 RabbitMQ 的延迟队列,通过延迟队列可以实现生产者生产的消息不是立即被消费者消费。那么这篇文章我们将来学习 RabbitMQ 的事务。 事务 RabbitMQ 是基于 AMQP 协议实现的,…

Gstreamer的webrtcbin插件

1、输入参数 static GOptionEntry entries[] {{"peer-id", 0, 0, G_OPTION_ARG_STRING, &peer_id, "String ID of the peer to connect to", "ID"},{"server", 0, 0, G_OPTION_ARG_STRING, &server_url, "Signalling se…

unity项目导出安卓工程后,在AndroidStudio打包报错:unityLibrary:BuildIl2CppTask‘.

下面这个是我在unity开发者社区提问后,他们回答得: 解决方案:我这边按照这几个方案检查了下,NDK和JDK都没问题,最后重启电脑才解决的,应该是文件被锁定了,我用的windows系统的。 验证&#xff…

一篇文章快速认识YOLO11 | 旋转目标检测 | 原理分析 | 模型训练 | 模型推理

本文分享YOLO11的旋转目标检测任务,在原始目标检测中,添加多一个角度预测,实现定向边界框检测。 其中旋转角度算法设计中,通过回归预测实现的。 目录 1、旋转目标检测概述 2、YOLO11中的OBB数据格式 3、分析模型配置参数 4、…

dmsql日志分析工具部署与使用DM8/DM7

dmsql日志分析工具部署与使用DM8/DM7 1 环境介绍2 JAVA 环境变量配置2.1 Os Kylin 10 JAVA 环境变量配置2.2 Windos7 JAVA环境变量配置 3 数据库配置3.1 数据库初始化参数3.2 数据库创建表 4 配置DMLOG日志分析工具4.1 Kylin v10 配置DMLOG日志分析工具4.2 执行日志分析4.3 Win…

Node-RED的面板的认识及操作

🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 📘 文章引言 📟 面板…

jvm虚拟机介绍

Java虚拟机(JVM)是Java语言的运行环境,它基于栈式架构,通过加载、验证、准备、解析、初始化等类加载过程,将Java类文件转换成平台无关的字节码,并在运行时动态地将其翻译成特定平台的机器码执行。 JVM的核心…

如何尽早地发现并抵御 DDoS 攻击?

近半年,随着软硬件服务的廉价化、规模化,国内外云厂商频繁遭受不明原因的大规模网络攻击,给很多网站带来了不良的影响。其实,DDoS 攻击这把「达摩斯之剑」一直高悬在各家互联网公司的头顶,虽然很多互联网企业对 DDoS 攻…