【数据结构和算法】三、动态规划原理讲解与实战演练

目录

1、什么是动态规划?

2、动态规划实战演练

2.1 力扣题之爬楼梯问题

(1)解题思路1:

(2)解题思路2:

(3)动态规划(DP):解题思路

(4)动态规划理论

2.2 力扣题之海盗船长

(1)解题思路1:

(2)解题思路2:

(3)动态规划:解题思路3:


1、什么是动态规划?

        动态规划(Dynamic Programming,DP)是把复杂问题分解为简单的子问题的求解方法。

        动态规划的基本思想虽然简单,但分解的子问题很多都不一样。所以需要多做一些练习,接触并了解各种子问题及分解的思路,结合着不同数据结构,才能逐渐掌握DP的技巧。

        所以,DP归纳起来就是多做练习,多思考,逐渐摸索题目的思考逻辑和优化思路。才能掌握使用DP解题的技巧。


   从实际问题出发,分几步走,不断练习、迭代熟练:

  1. 暴力求解(枚举)
  2. 拆分子问题(DP)解法
  3. DP原理与题型相结合的分析

2、动态规划实战演练

2.1 力扣题之爬楼梯问题

以力扣著名的题“爬楼梯”为例子:

  • 爬楼梯问题: . - 力扣(LeetCode)

    假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

    每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

    示例 1:

    输入:n = 2
    输出:2
    解释:有两种方法可以爬到楼顶。
    1. 1 阶 + 1 阶
    2. 2 阶
    

    示例 2:

    输入:n = 3
    输出:3
    解释:有三种方法可以爬到楼顶。
    
    1. 1 阶 + 1 阶 + 1 阶
    2. 1 阶 + 2 阶
    3. 2 阶 + 1 阶
    

    提示:

    • 1 <= n <= 45

    (1)解题思路1:

    暴力求解,排列所有1,2的组合。

    寻找总和为n的,不同数字长度的组合。

    from itertools import product
    
    def climbStairs(n):
        pms = []
        for rep in range(1,n+1):
            permutations = list(product([1,2],repeat=rep))
            for pm in permutations:
                if sum(pm) == n:
                    pms.append(pm)
        return len(pms)
    

    ※ itertools是python为高效循环而创建迭代器的函数库 。product就是一个笛卡尔积(嵌套for循环)功能实现的函数。

    • 时间复杂度O(n^3)
    • 空间复杂度O(n)

    (2)解题思路2:

    问题寻找的是爬楼梯的方法数量,而不是具体统计每次走几阶。

    所以问题关注的是每次爬1阶、爬2阶两种走法的组合上。

    假设n=3,可以直接排列一下相应的组合

    3 = 1 + 1 + 1
    3 = 2 + 1
    3 = 1 + 2
    

    简单直观,但我们要寻找的爬楼梯的规律。似乎还没有发现,继续增加n的数量~

    当n=4:

    4 = 1 + 1 + 1 + 1
    4 = 2 + 1 + 1
    4 = 1 + 2 + 1
    
    4 = 1 + 1 + 2
    4 = 2 + 2
    

    当n=5时:

    5 = 1 + 1 + 1 + 1 + 1
    5 = 2 + 1 + 1 + 1
    5 = 1 + 2 + 1 + 1
    
    5 = 1 + 1 + 2 + 1
    5 = 2 + 2 + 1
    
    5 = 1 + 1 + 1 + 2
    5 = 2 + 1 + 2
    5 = 1 + 2 + 2
    

            排列组合的方式,让我们似乎观察到了数值的规律。那就是n阶的走法,包含了n-1阶和n-2阶的走法。且 n阶的走法 = (n-1)阶走法 + (n-2)阶走法

    简单的循环遍历就可以完成走法的累加:

    n = 5
    n1,n2 = 1,2  # n=1和n=2情况下的走法
    res = 0
    for i in range(3, n+1):  # 从n=3时开始,直到n
        res = n1 + n2
        n1 = n2
        n2 = res
    print(res)
    

    测试下n=6,结果(n-1) + (n-2) = 8 + 5 = 13

    还可以转换为递归写法

    def climbStairs(n):
        if n <= 1:
    		    return 1
        return climbStairs(n-1) + climbStairs(n-2) 
    

    至此,就是暴力算法的解题思路,所有可能的组合都做一遍。

    (3)动态规划(DP):解题思路

    依据上面算法特征分析的基础上,使用一个数组动态存储n的计算结果。

    初始化数组,预先存入n-1和n-2的结果

    def climbStairs(n):
        if n <= 1:
            return n
        dp = [i for i in range(n+1)]
        for i in range(3,n+1):
            dp[i] = dp[i-1] + dp[i-2]
        return dp[-1]
    

    上面代码中的dp就是我们提到的数组,其中dp[i] = dp[i-1] + dp[i-2]

    循环执行完成后,数组中最后一次计算的结果就是爬n阶楼梯的方法数。

    • 时间复杂度:O(n)
    • 空间复杂度:O(n)

    对于空间复杂度,还可以进一步优化。由于我们只考虑n以及n-1、n-2的值。所以,中间的过程值可以丢弃。定义一个固定长度的数组,每次计算结果动态覆盖,如下:

    def climbStairs(n):
        if n <= 1:
            return n
        dp = [0,1,2]
        for i in range(3,n+1):
            sum = dp[1] + dp[2]
            dp[1] = dp[2]
            dp[2] = sum
        return dp[2]
    
    • 时间复杂度:O(n)
    • 空间复杂度:O(1)

    (4)动态规划理论

            学习动态规划算法,是从多种题解的思路中学习和发现。众多技术高手都给出了思路和技巧,但从实际出发,建议还是先埋头做题,积累了练习和分析思考后,再进行看高手的总结和归纳才会有“英雄所见略同”的共识。

    在这之前,针对每道题目的分析,希望能思考如下的几个问题:

    • 题目计算的目标是什么

      走台阶问题的目标是求走法组合总数

    • 计算分解的子问题是什么

      (n-1)阶走法 、(n-2)阶走法就是n阶走法的子问题 ****

    • 转移方程是否是子问题的组合

      转移方程上面已经写出来了 f(n) = f(n-1)+f(n-2) 。

    • 能否优化

      使用动态数组或字典来存储中间结果,可以有效的减少重复计算的复杂度。

      当然,涉及到使用数组等容器来实现计算和优化时,还会接触到背包问题。

2.2 力扣题之海盗船长

问题:海盗船长:. - 力扣(LeetCode)

海盗船长:船长从坐标为(0,0)的位置出发,每次只能向x轴,y轴正方向走一步,求走到x,y点有几种走法?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:n = 3, n = 2
输出:3
解释:从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 10^9

(1)解题思路1:

从[0,0]到[x,y],是一个从矩阵左上角向右、向下探索的过程。

想要到达[x,y]位置,必然经过[x-1,y]或者[x,y-1]

所以,路径问题的分解就是求[x , y] = [x-1,y] + [x,y-1]

设 m,n = 3,7 暴力解法

results = {}

def path_count(x, y):
    # results = {}
    if x == 1 or y == 1:
        results[(x,y)] = 1
        return 1

      results[(x,y)] = path_count(x-1,y) + path_count(x,y-1)
      return results[(x,y)]

print(path_count(3,7))

时间复杂度:O(mn)

空间复杂度:O(n)

(2)解题思路2:

观察上面的方案,可以发现分解的路径实际上存在着大量重复的计算

print(results)

我们可以思考:走到results中(m,n)位置的上一步,一定是(m-1,n),(m,n-1),(m-1,n-1)的位置。

这其中(m-1,n-1)走过的路径中,就包含了(m-1,n)和(m,n-1)走过的路径。

以此类推,所有(m-2,n-2)的路径中,也就包含了(m-1,n-1), (m-1,n), (m,n-1) …… 如此嵌套。我们把计算结果存储在results里面,再次遇到相同的计算时,就直接把结果提取出来。

def path_count(x, y):
    if x == 1 or y == 1:
        results[(x,y)] = 1
        return 1
    # 查找重复节点,直接返回计算后结果
    if (x,y) in results:
        return results[(x,y)]
    
    results[(x,y)] = path_count(x-1,y) + path_count(x,y-1)
    return results[(x,y)]

(3)动态规划:解题思路3:

动态规划方式实现:

转移方程:f(x,y) = f(x-1,y) + f(x, y-1)

分两步实现:

  1. 计算“到达”每个位置所需要的步数(初始为1)

    m,n = 3,7
    path_counts = [[1] * n for j in range(m)]
    for i in range(m):
        for j in range(n):
            print(path_counts[i][j], end=' ')
        print()
    
  2. 计算从起始位置,到达当前位置,步数的累加和

    for x in range(1,m):
        for y in range(1,n):
            path_counts[x][y] = path_counts[x-1][y] + path_counts[x][y-1]
    
    print(path_counts[m-1][n-1])
    

完整代码:

def path_count(x, y):
    path_counts = [[1] * y for j in range(x)]
    for i in range(1,x):
        for j in range(1,y):
            path_counts[i][j] = path_counts[i-1][j] + path_counts[i][j-1]
    return path_counts[x-1][y-1]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/900977.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【R + Python】iNaturalist 网站图片下载 inat api

文章目录 一、iNaturalist 简介二、R语言API&#xff1a;rinat三、示例3.1 获取观测数据3.2 绘制可视化图像函数用法 3.4 在区域网格中搜索3.5 下载图片3.51 提取图片 url3.52 下载图片: R语言3.53 下载图片: python 四、获取详细rinat包的文档 一、iNaturalist 简介 &#x1…

毕业设计选题:基于Python的招聘信息爬取和可视化平台

开发语言&#xff1a;Python框架&#xff1a;djangoPython版本&#xff1a;python3.7.7数据库&#xff1a;mysql 5.7数据库工具&#xff1a;Navicat11开发软件&#xff1a;PyCharm 系统展示 采集的数据列表 招聘数据大屏 摘要 本系统通过对网络爬虫的分析&#xff0c;研究智…

xlnt加载excel报错:xl/workbook.xml:2:2581: error: attribute ‘localSheetId‘ expected

解决方案 大家不一定能看懂&#xff0c;地址里说的啥意思&#xff0c;地址过去主要说明了从https://github.com/musshorn/xlnt/tree/issue_685合入可以解决问题&#xff0c;后面再想推送到官方地址&#xff0c;但没人维护了。 我这边直接给大家说一个结果就是&#xff1a;问题…

dbt-codegen: dbt自动生成模板代码

dbt项目采用工程化思维&#xff0c;数据模型分层实现&#xff0c;支持描述模型文档和测试&#xff0c;非常适合大型数据工程项目。但也需要用户编写大量yaml描述文件&#xff0c;这个过程非常容易出错且无聊。主要表现&#xff1a; 手工为dbt模型编写yaml文件&#xff0c;这过…

关于eclipse的workspace

如果项目很多&#xff0c;为了方便管理&#xff0c;最好不要是使用working set 对项目进行分组。一个workspace加载项目过多&#xff0c;即使进行分组&#xff0c;有些操作也很对所有项目生效。为了避免卡顿&#xff0c;建议直接使用workspace分组管理&#xff0c;而不是workin…

2024年妈杯MathorCup大数据竞赛A题超详细解题思路

2024年妈杯大数据竞赛初赛整体难度约为0.6个国赛。A题为台风中心路径相关问题&#xff0c;为评价预测问题&#xff1b;B题为库存和销量的预测优化问题。B题难度稍大于A题&#xff0c;可以根据自己队伍情况进行选择。26日早六点之前发布AB两题相关解题代码论文。 下面为大家带来…

Github优质项目推荐(第八期)

文章目录 Github优质项目推荐 - 第八期一、【manim】&#xff0c;66.5k stars - 创建数学动画的 Python 框架二、【siyuan】&#xff0c;19.5k stars - 个人知识管理软件三、 【GetQzonehistory】&#xff0c;1.3k stars - 获取QQ空间发布的历史说说四、【SecLists】&#xff0…

【C++篇】栈的层叠与队列的流动:在 STL 的韵律中探寻数据结构的优雅之舞

文章目录 C 栈与队列详解&#xff1a;基础与进阶应用前言第一章&#xff1a;栈的介绍与使用1.1 栈的介绍1.2 栈的使用1.2.1 最小栈1.2.2 示例与输出 1.3 栈的模拟实现 第二章&#xff1a;队列的介绍与使用2.1 队列的介绍2.2 队列的使用2.2.1 示例与输出 2.3 队列的模拟实现2.3.…

pair类型应用举例

在main.cpp里输入程序如下&#xff1a; #include <iostream> //使能cin(),cout(); #include <utility> //使能pair数据类型; #include <string> //使能string字符串; #include <stdlib.h> //使能exit(); //pair类型可以将两个相同的或不同类…

一个基于.NET8+WPF开源的简单的工作流系统

项目介绍 AIStudio.Wpf.AClient 是一个基于 WPF (Windows Presentation Foundation) 构建的客户端框架&#xff0c;专为开发企业级应用而设计。该项目目前版本为 6.0&#xff0c;进行了全面优化和升级&#xff0c;提供了丰富的功能和模块&#xff0c;以满足不同场景下的开发需…

张驰咨询:揭秘六西格玛项目如何“重塑”手术机器人集成度

项目背景 XR-1000型腔镜手术机器人是精智医疗公司最新推出的智能化手术设备&#xff0c;专注于微创外科手术&#xff0c;具有高度的精度和灵活性。随产品功能的扩展以及市场需求升级&#xff0c;系统集成度成为制约其性能提升的瓶颈。当前的设计中&#xff0c;机器人各模块的集…

C++20中头文件syncstream的使用

<syncstream>是C20中新增加的头文件&#xff0c;提供了对同步输出流的支持&#xff0c;即在多个线程中可安全地进行输出操作&#xff0c;此头文件是Input/Output库的一部分。包括&#xff1a; 1.std::basic_syncbuf&#xff1a;是std::basic_streambuf的包装器(wrapper)&…

Golang | Leetcode Golang题解之第509题斐波那契数

题目&#xff1a; 题解&#xff1a; type matrix [2][2]intfunc multiply(a, b matrix) (c matrix) {for i : 0; i < 2; i {for j : 0; j < 2; j {c[i][j] a[i][0]*b[0][j] a[i][1]*b[1][j]}}return }func pow(a matrix, n int) matrix {ret : matrix{{1, 0}, {0, 1}}…

格姗知识圈博客网站开源了!

格姗知识圈博客 一个基于 Spring Boot、Spring Security、Vue3、Element Plus 的前后端分离的博客网站&#xff01;本项目基本上是小格子一个人开发&#xff0c;由于工作和个人能力原因&#xff0c;部分技术都是边学习边开发&#xff0c;特别是前端&#xff08;工作中是后端开…

中电信翼康工程师:我在 Apache SeaTunnel 社区的贡献之旅

贡献者Github ID&#xff1a;luckyLJY 文章整理&#xff1a;曾辉 Apache SeaTunnel 作为一款强大的数据同步和转换工具&#xff0c;凭借其部署易用性、容错机制、数据源支持、性能优势、功能丰富性以及活跃的社区支持&#xff0c;成为了数据工程师们不可或缺的利器。 因其具有的…

LCD手机屏幕高精度贴合

LCD手机屏幕贴合&#xff0c;作为智能手机生产线上至关重要的一环&#xff0c;其质量直接关乎用户体验与产品竞争力。这一工艺不仅要求屏幕组件间的无缝对接&#xff0c;达到极致的视觉与触觉效果&#xff0c;还需确保在整个生产过程中&#xff0c;从材料准备到最终成品&#x…

Ansible 的脚本 --- playbooks剧本

playbooks 本身由以下各部分组成 &#xff08;1&#xff09;Tasks&#xff1a;任务&#xff0c;即通过 task 调用 ansible 的模板将多个操作组织在一个 playbook 中运行 &#xff08;2&#xff09;Vars&#xff1a;变量 &#xff08;3&#xff09;Templates&#xff1a;模板 &a…

【JavaEE初阶】网络编程TCP协议实现回显服务器以及如何处理多个客户端的响应

前言 &#x1f31f;&#x1f31f;本期讲解关于TCP/UDP协议的原理理解~~~ &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 &#x1f525; 你的点赞就是小编不断更新的最大动力 &#x1f386;那么废话不多说…

提升数据处理效率:TDengine S3 的最佳实践与应用

在当今数据驱动的时代&#xff0c;如何高效地存储与处理海量数据成为了企业面临的一大挑战。为了解决这一问题&#xff0c;我们在 TDengine 3.2.2.0 首次发布了企业级功能 S3 存储。这一功能经历多个版本的迭代与完善后&#xff0c;逐渐发展成为一个全面和高效的解决方案。 S3…

STM32应用详解(9)使用USART远程控制LED

文章目录 前言一、使用USART远程控制LED二、代码实现及分析1.main函数2.UART串口初始化函数 前言 学习使用USART远程控制&#xff1a;在PC端通过串口助手输入数字&#xff0c;控制开发板上的LED的亮灭。 一、使用USART远程控制LED 《usart.c》文件完成UART串口初始化&#xf…