用Java做智能客服,基于私有知识库

构建Java智能客服系统的整体思路

使用Java构建智能客服系统的整体思路是:

首先将客服QA文档以Word形式导入到系统中,通过向量化处理存入知识库。

当用户提出问题时,系统会根据问题内容从知识库中检索相关的上下文信息,并结合大模型生成精准的回答。

本样例整个过程利用Spring AI框架的rag能力实现,确保了与大模型之间的高效交互。

这样,借助于RAG机制和Java语言的灵活性,能够快速搭建起功能强大的智能客服平台。这种方法不仅提升了客户服务质量,也大大减轻了人工客服的工作负担。

RAG介绍:融合检索与生成的文本优化技术

检索增强生成(RAG, Retrieval-Augmented Generation)是一种结合了检索模型和生成模型的技术,旨在提高基于大模型的文本生成质量。

它通过从私有知识库中检索相关信息来辅助大模型生成更加准确和具体的回复。这样不仅可以减少由于数据缺乏而导致的大模型“幻觉”问题,还能让生成的内容更好地反映企业特有的信息和需求,从而使得回答更加精确、可靠。

使用RAG时,开发者可以将企业的专有文档或数据库作为私有知识库,确保输出内容的相关性和准确性。

Spring AI Alibaba介绍:简化Java集成阿里云AI服务的框架

Spring AI 是由Spring官方团队维护的一个AI应用框架,专为Java开发者设计,用于简化与阿里云AI服务的集成。其核心优势在于提供了统一的接口标准,使得开发者可以轻松切换不同的AI实现(如OpenAI、通义千问等),而无需大幅改动代码。此外,该框架还支持检索增强生成(RAG)技术,能够通过私有知识库增强模型的回答质量。结合阿里云的最佳实践,包括对通义系列大模型的支持,以及丰富的RAG应用场景示例,Spring AI Alibaba为构建高效、可靠的AI驱动应用程序提供了强大的工具集。

检索增强的后端代码编写

下面将具体介绍如何配置项目、构建索引以及创建相应的API接口来读取并使用指定的doc文件——"智能客服的专家QA.docs"。

前置准备

首先确保您的开发环境满足以下条件:

  • JDK版本在17及以上。
  • Spring Boot版本为3.3.x或更高。
  • 已从阿里云获取到通义千问API Key,并将其设置为环境变量AI_DASHSCOPE_API_KEY

此外,还需要在pom.xml中添加Spring仓库与依赖项以支持Spring AI Alibaba特性。这部分内容已在我了解的信息的第一篇文章中详细说明,请参考那里给出的步骤完成仓库及依赖的配置。

服务代码编写

根据需求描述,我们需要创建一个能够读取PDF文档、构建向量索引的服务类,同时定义用于查询该文档内容的REST API接口。这里直接基于我了解的信息中的示例进行扩展:

  1. 初始化向量存储与文档检索器:需要为我们的PDF文档指定名称(例如:“智能客服的专家QA”),并在构造函数里初始化相关组件。
  1. 实现索引构建逻辑:提供一个方法来加载指定路径下的PDF文档,然后将其转换成向量形式存入远程向量库。
  1. 创建查询接口:对外暴露一个接受用户输入的API,它会利用之前建立的向量索引来查找最相关的文档片段,并据此生成响应。

下面是具体的实现代码:

RagService.java
public class RagService {

    private final ChatClient chatClient;
    private final VectorStore vectorStore;
    private final DashScopeApi dashscopeApi = new DashScopeApi("your-api-key");
    private DocumentRetriever retriever;

    public RagService(ChatClient chatClient, EmbeddingModel embeddingModel) {
        this.chatClient = chatClient;
        this.vectorStore = new DashScopeCloudStore(dashscopeApi, new DashScopeStoreOptions("智能客服的专家QA"));
        this.retriever = new DashScopeDocumentRetriever(dashscopeApi,
                DashScopeDocumentRetrieverOptions.builder().withIndexName("智能客服的专家QA").build());
    }

    // 索引构建方法
    public String buildIndex() {
        String filePath = "/path/to/智能客服的专家QA.docs";
        DocumentReader reader = new DashScopeDocumentCloudReader(filePath, dashscopeApi, null);
        List<Document> documentList = reader.get();
        vectorStore.add(documentList);
        return "索引构建成功";
    }

    // 查询方法
    public StreamResponseSpec queryWithDocumentRetrieval(String message) {
        return chatClient.prompt()
                .user(message)
                .advisors(new DocumentRetrievalAdvisor(retriever, DEFAULT_USER_TEXT_ADVISE))
                .stream();
    }
}
RagController.java
@RestController
@RequestMapping("/ai")
public class RagController {

    private final RagService ragService;

    @Autowired
    public RagController(RagService ragService) {
        this.ragService = ragService;
    }

    @GetMapping("/steamChat")
    public Flux<String> generate(@RequestParam("input") String input, HttpServletResponse response) {
        StreamResponseSpec chatResponse = ragService.queryWithDocumentRetrieval(input);
        response.setCharacterEncoding("UTF-8");
        return chatResponse.content();
    }

    @GetMapping("/buildIndex")
    public ResponseEntity<String> buildIndex() {
        String result = ragService.buildIndex();
        return ResponseEntity.ok(result);
    }
}

使用说明

  • 在应用启动前,请先调用/buildIndex接口来初始化索引。
  • 完成索引构建之后,可以通过访问http://localhost:8080/ai/steamChat?input=您的问题来测试检索增强后的问答功能。

此解决方案假设您已经按照我了解的信息部分的要求正确设置了项目的基础环境和依赖关系。如果遇到任何问题,请参照官方文档或社区资源寻求进一步的帮助。

增强检索:前端代码实践指南

构建项目并填写代码

首先,创建一个新的 React 应用并安装所需的依赖:

npx create-react-app frontend
cd frontend
npm install
public/index.html
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Chat App</title>

</head>

<body>
  <div id="root"></div>

</body>

</html>
src/index.js
import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';

ReactDOM.render(
  <React.StrictMode>
    <App />
  </React.StrictMode>,
  document.getElementById('root')
);
src/App.js
import React from 'react';
import ChatComponent from './components/ChatComponent';

function App() {
  return (
    <div className="App">
      <ChatComponent />
    </div>

  );
}

export default App;
src/components/ChatComponent.js
import React, { useState } from 'react';

function ChatComponent() {
  const [input, setInput] = useState('');
  const [messages, setMessages] = useState('');

  const handleInputChange = (event) => {
    setInput(event.target.value);
  };

  const handleSendMessage = async () => {
    try {
      // 注意:这里的fetch URL对应后端的GET/POST请求,请确保后端允许CORS跨域
      const response = await fetch(`http://localhost:8080/ai/steamChat?input=${input}`);
      if (!response.ok) throw new Error(`HTTP error! status: ${response.status}`);

      const reader = response.body.getReader();
      const decoder = new TextDecoder('utf-8');
      let done = false;

      while (!done) {
        const { value, done: readerDone } = await reader.read();
        done = readerDone;
        const chunk = decoder.decode(value, { stream: true });
        setMessages((prevMessages) => prevMessages + chunk);
      }

      // 在每次请求完成后添加换行符以区分不同的消息
      setMessages((prevMessages) => prevMessages + '\n\n=============================\n\n');
    } catch (error) {
      console.error('Failed to fetch', error);
    }
  };

  const handleClearMessages = () => {
    setMessages('');
  };

  return (
    <div>
      <input
        type="text"
        value={input}
        onChange={handleInputChange}
        placeholder="Enter your message"
      />
      <button onClick={handleSendMessage}>Send</button>

      <button onClick={handleClearMessages}>Clear</button>

      <div>
        <h3>Messages:</h3>

        <pre>{messages}</pre>

      </div>

    </div>

  );
}

export default ChatComponent;

运行项目

  1. 启动前端应用:
cd frontend
npm start
  1. 确保你的后端服务已经启动,并且监听在 http://localhost:8080 上。如果需要的话,请根据实际情况调整接口URL。

解释

  • 输入框:用户可以通过输入框输入消息。
  • 发送按钮:点击发送按钮后,会触发 handleSendMessage 函数,该函数通过 fetch 发送请求到指定的后端URL(http://localhost:8080/ai/steamChat?input=${input}),并将接收到的数据流实时更新到页面上。
  • 清除按钮:用于清空当前显示的消息内容。
  • 消息展示区:使用 <pre> 标签来展示从服务器接收的所有消息,这保证了文本格式不会被浏览器默认样式影响,保留原始格式。

上述实现中,我们利用了 fetch API 的 response.body 来读取数据流,并通过 TextDecoder 将二进制数据转换成可读字符串,这样可以实现实时显示来自后端的数据流。注意,为了支持跨源资源共享(CORS),请确保后端服务配置了相应的CORS策略。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/894709.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

字节跳动实习生投毒自家大模型细节曝光 影响到底有多大?

10月19日&#xff0c;字节跳动大模型训练遭实习生攻击一事引发广泛关注。据多位知情人士透露&#xff0c;字节跳动某技术团队在今年6月遭遇了一起内部技术袭击事件&#xff0c;一名实习生因对团队资源分配不满&#xff0c;使用攻击代码破坏了团队的模型训练任务。 据悉&#xf…

【动态规划】【斐波那契数列模型】解码方法

解码方法 91. 解码方法 算法原理 确定状态表示 经验题目要求&#xff1a;以 i 位置为结尾dp[i] 表示以 i 位置为结尾时&#xff0c;解码方法的总数 状态转移方程 定义好状态表示&#xff0c;我们就可以分析 i 位置的 dp 值&#xff0c;如何由 [前面] 或者 [后面] 的信息推…

Leetcode 1137. 第 N 个泰波那契数

原题链接&#xff1a;Leetcode 1137. 第 N 个泰波那契数 代码1&#xff1a; class Solution { public:int a[40];int tribonacci(int n) {a[0]0;a[1]1;a[2]1;if(n<1) return n;if(a[n]) return a[n];a[n]tribonacci(n-1)tribonacci(n-2)tribonacci(n-3);return a[n];} };代…

【LeetCode】每日一题 2024_10_19 使二进制数组全部等于 1 的最少操作次数 II(贪心)

前言 每天和你一起刷 LeetCode 每日一题~ LeetCode 启动&#xff01; 题目&#xff1a;使二进制数组全部等于 1 的最少操作次数 II 力扣每日一题刷新规律&#xff0c;昨天刷新了 I&#xff0c;那今天必定有 II。 代码与解题思路 今天的题目和昨天的非常像&#xff0c;只有一…

SVM支持向量机python实现

支持向量机&#xff08;Support Vector Machine, SVM&#xff09;是一种强大的监督学习算法&#xff0c;主要用于分类和回归任务。SVM的核心思想是找到一个最优的超平面&#xff0c;使得不同类别的数据点能够被尽可能清晰地分开&#xff0c;并且这个超平面与最近的数据点之间有…

SpringCloud无介绍快使用,单机Eureka服务注册中心cloud-eureka-server7001搭建(十)

TOC 问题背景 从零开始学springcloud微服务项目 注意事项&#xff1a; 约定 > 配置 > 编码IDEA版本2021.1这个项目&#xff0c;我分了很多篇章&#xff0c;每篇文章一个操作步骤&#xff0c;目的是显得更简单明了controller调service&#xff0c;service调dao项目源码以及…

微软的 Drasi:一种轻量级的事件驱动编程方法

微软的开源数据变化处理平台有望提供一种全新的方式来构建和管理可产生持续事件流的云应用程序。 Microsoft Azure 孵化团队是微软超大规模云中比较有趣的组成部分之一。它介于传统软件开发团队和研究组织之间&#xff0c;致力于构建大规模分布式系统问题的解决方案。 这些解决…

Kettle9.4支持Clickhouse数据源插件开发以及性能测试

前言 最近业务这边有个指标需要用到大数据这边的列式数据库进行处理&#xff0c;由于kettle不支持clickhouse数据源驱动&#xff0c;这里查了一下网上的相关资料&#xff0c;发现了一些别人开发好的驱动包&#xff0c;下载下来后使用效果不尽人意。总结下来有以下几个问题&…

【C++】string类(接口使用详解 下)

我们接着【C】string类&#xff08;接口使用详解 上&#xff09;-CSDN博客 继续介绍string的使用。 1.string类对象的修改操作 我们就说一下用的比较多的接口。 1.1 operator 这个接口可以尾插一个字符&#xff0c;或者一个字符串&#xff0c;或者一个对象。 string s1(&qu…

回归测试内容多,时间紧,人还少,怎么办?

问答网站上看到一个提问&#xff1a; 项目进入测试&#xff0c;但回归测试内容多&#xff0c;发布时间紧迫&#xff0c;人还少&#xff0c;要怎么做&#xff1f; 标准答案应该是自动化测试 回归测试主要关注的是历史功能&#xff0c;如果自动化测试覆盖率达到一定程度的话&…

lazyLoad

//1.通过React的lazy函数配合import()函数动态加载路由组件 > 路由组件代码会被分开打包 const Login lazy(()>import(/pages/Login)) //2.通过<Suspense>指定在加载得到路由打包文件前显示一个自定义loading界面 <Suspense fallback{<h1&…

探索Spring Cloud Config:构建高可用的配置中心

目录 认识Spring Cloud ConfigConfig Server读取配置文件步骤1&#xff1a;&#xff08;1&#xff09;创建config-server项目&#xff08;2&#xff09;在config-server中开启Config Server功能&#xff08;3&#xff09;在config-server配置文件进行相关配置&#xff08;4&…

计算机毕业设计Python深度学习房价预测 房源可视化 房源爬虫 二手房可视化 二手房爬虫 递归决策树模型 机器学习 深度学习 大数据毕业设计

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 房地产是促进我国经济持续增…

征程 6E DISPLAY 功能介绍及上手实践

01 功能概述 本文将带大家一起实现单路、多路 MIPI CSI TX 输出、IDU 回写、IDU oneshot 模式、绑定输出 VPS 数据等功能&#xff0c;此处主要介绍各 sample 的实现与使用方法。 02 软件架构说明 本文中绑定 VPS 输出功能基于 libvio API 实现&#xff0c;调用 libvio 提供的…

Ubuntu16.04安装openssl库

Ubuntu16.04安装openssl库 Chapter1 Ubuntu16.04安装openssl库 Chapter1 Ubuntu16.04安装openssl库 原文链接&#xff1a;https://blog.csdn.net/weixin_36584476/article/details/107321893 记录一下省得忘了 1.首先去openssl官网下载源码www.openssl.org/source/&#xff0…

西瓜书书本内容杂谈

西瓜书书本内容杂谈 把圈子变小&#xff0c;把语速放缓&#xff0c;把心放宽&#xff0c;把生活打理好 只能说快速过了一遍&#xff0c;花了一个多星期吧&#xff0c;然后后边的内容是一点也看不懂了&#xff08;能发现前面记得比较详细&#xff0c;到了后边是看不懂一点了&a…

音视频基础知识分享

音视频基础知识分享 RKMedia的各个组件及其交互 首先上图&#xff1a; 考虑到公司业务主要是相机&#xff0c;所以&#xff0c;主要去关注图像数据流&#xff0c;对于音频数据流直接忽略。 图像数据流向&#xff1a; Camera Sensor将光信号转换成电信号&#xff08;Raw数据&…

基于语音识别的停车共享小程序(lw+演示+源码+运行)

目 录 1 绪论1 1.1 课题研究背景1 1.2 研究现状1 1.3 论文结构安排1 2 系统关键技术2 2.1 微信小程序2 2.2 微信Web开发者工具2 2.3 JavaScript简介2 2.4 微信小程序API接口2 2.5 MYSQL数据库2 3 系统分析1 3.1 可行性分析1 3.1.1 技术可行性1 3.1.2 经济可行性1…

如何查看公众号真实粉丝数,2024年还有哪些粉丝百万以上的大号?

如何查看公众号真实粉丝数&#xff1f;很简单&#xff0c;写了个脚本一键获取&#xff0c;看看2024年还有哪些粉丝百万以上的大号&#xff1f; 猫笔刀这个号2018-2024年的所有历史文章&#xff0c;共1168篇&#xff0c;导出的excel文章数据包含文章日期&#xff0c;文章标题&a…

bean的实例化2024年10月17日

跟不上为基础 1.你的java学习路线 2. 3.课程 注解的装配 contoller调用service用的是注解装配