C++11新特性(4)

目录

1.包装器

2.线程库

2.1thread类的简单介绍

2.2线程函数参数

2.3原子性操作库(atomic)

2.4lock_guard与unique_lock

2.5mutex的种类

1. std::mutex

2. std::recursive_mutex

3. std::timed_mutex

4. std::recursive_timed_mutex

2.6lock_guard

2.7unique_lock

3.支持两个线程交替打印,一个打印奇数,一个打印偶数


1.包装器

function包装器

function包装器 也叫作适配器。C++中的function本质是一个类模板,也是一个包装器。 那么我们来看看,我们为什么需要function呢?

//ret = func(x);
// 上面func可能是什么呢?那么func可能是函数名?函数指针?函数对象(仿函数对象)?也有可能
//是lamber表达式对象?所以这些都是可调用的类型!如此丰富的类型,可能会导致模板的效率低下!
//为什么呢?我们继续往下看

template<class F, class T>
T useF(F f, T x)
{
	static int count = 0;
	cout << "count:" << ++count << endl;
	cout << "count:" << &count << endl;
	return f(x);
}
double f(double i)
{
	return i / 2;
}
struct Functor
{
	double operator()(double d)
	{
		return d / 3;
	}
};
int main()
{
	// 函数名
	cout << useF(f, 11.11) << endl;
	// 函数对象
	cout << useF(Functor(), 11.11) << endl;
	// lamber表达式
	cout << useF([](double d)->double { return d / 4; }, 11.11) << endl;
	return 0;
}

通过上面的程序验证,我们会发现useF函数模板实例化了三份

包装器可以很好的解决上面的问题

std::function在头文件<functional>
// 类模板原型如下
template <class T> function;     // undefined
template <class Ret, class... Args>
class function<Ret(Args...)>;
模板参数说明:
Ret : 被调用函数的返回类型
Args…:被调用函数的形参

// 使用方法如下:
int f(int a, int b)
{
	return a + b;
}
struct Functor
{
public:
	int operator() (int a, int b)
	{
		return a + b;
	}
};
class Plus
{
public:
	static int plusi(int a, int b)
	{
		return a + b;
	}
	double plusd(double a, double b)
	{
		return a + b;
	}
};
int main()
{
	// 函数名(函数指针)
	function<int(int, int)> func1 = f;
	cout << func1(1, 2) << endl;

	// 函数对象
	std::function<int(int, int)> func2 = Functor();
	cout << func2(1, 2) << endl;

	// lamber表达式
	std::function<int(int, int)> func3 = [](const int a, const int b)
	{return a + b; };
	cout << func3(1, 2) << endl;

	// 类的成员函数
	std::function<int(int, int)> func4 = &Plus::plusi;
	cout << func4(1, 2) << endl;
	std::function<double(Plus, double, double)> func5 = &Plus::plusd;
	cout << func5(Plus(), 1.1, 2.2) << endl;

	return 0;
}

有了包装器,如何解决模板的效率低下,实例化多份的问题呢?

template<class F, class T>
T useF(F f, T x)
{
	static int count = 0;
	cout << "count:" << ++count << endl;
	cout << "count:" << &count << endl;
	return f(x);
}
double f(double i)
{
	return i / 2;
}
struct Functor
{
	double operator()(double d)
	{
		return d / 3;
	}
};
int main()
{
	// 函数名
	std::function<double(double)> func1 = f;
	cout << useF(func1, 11.11) << endl;
	// 函数对象
	std::function<double(double)> func2 = Functor();
	cout << useF(func2, 11.11) << endl;
	// lamber表达式
	std::function<double(double)> func3 = [](double d)->double { return d /
		4; };
	cout << useF(func3, 11.11) << endl;

	return 0;
}

上述代码我们会发现我们是通过usef函数来进行统筹的。

包装器的其他一些场景:

. - 力扣(LeetCode)

class Solution {
public:
	int evalRPN(vector<string>& tokens) {
		stack<int> st;
		for (auto& str : tokens)
		{
			if (str == "+" || str == "-" || str == "*" || str == "/")
			{
				int right = st.top();
				st.pop();
				int left = st.top();
				st.pop();
				switch (str[0])
				{
				case '+':
					st.push(left + right);
					break;
				case '-':
					st.push(left - right);
					break;
				case '*':
					st.push(left * right);
					break;
				case '/':
					st.push(left / right);
					break;
				}
			}
			else
			{
				// 1、atoi itoa
				// 2、sprintf scanf
				// 3、stoi to_string C++11
				st.push(stoi(str));
			}
		}
		return st.top();
	}
};
// 使用包装器以后的玩法
class Solution {
public:
	int evalRPN(vector<string>& tokens) {
		stack<int> st;
		map<string, function<int(int, int)>> opFuncMap =
		{
		{ "+", [](int i, int j) {return i + j; } },
		{ "-", [](int i, int j) {return i - j; } },
		{ "*", [](int i, int j) {return i * j; } },
		{ "/", [](int i, int j) {return i / j; } }
		};
		for (auto& str : tokens)
		{
			if (opFuncMap.find(str) != opFuncMap.end())
			{
				int right = st.top();
				st.pop();
				int left = st.top();
				st.pop();
				st.push(opFuncMap[str](left, right));
			}
			else
			{
				// 1、atoi itoa
				// 2、sprintf scanf
				// 3、stoi to_string C++11
				st.push(stoi(str));
			}
		}
		return st.top();
	}
};

bind

std::bind函数定义在头文件中,是一个函数模板,它就像一个函数包装器(适配器),接受一个可调用对象(callable object),生成一个新的可调用对象来“适应”原对象的参数列表。一般而言,我们用它可以把一个原本接收N个参数的函数fn,通过绑定一些参数,返回一个接收M个(M 可以大于N,但这么做没什么意义)参数的新函数。同时,使用std::bind函数还可以实现参数顺序调整等操作。

// 原型如下:
template <class Fn, class... Args>
/* unspecified */bind(Fn&& fn, Args&&... args);

// with return type (2) 
template <class Ret, class Fn, class... Args>
/* unspecified */ bind(Fn&& fn, Args&&... args);

可以将bind函数看作是一个通用的函数适配器,它接受一个可调用对象,生成一个新的可调用对象来“适应”原对象的参数列表。 调用bind的一般形式:auto newCallable = bind(callable,arg_list); 其中,newCallable本身是一个可调用对象,arg_list是一个逗号分隔的参数列表,对应给定的 callable的参数。当我们调用newCallable时,newCallable会调用callable,并传给它arg_list中的参数。 arg_list中的参数可能包含形如_n的名字,其中n是一个整数,这些参数是“占位符”,表示 newCallable的参数,它们占据了传递给newCallable的参数的“位置”。数值n表示生成的可调用对象中参数的位置:_1为newCallable的第一个参数,_2为第二个参数,以此类推。

// 使用举例
int Plus(int a, int b)
{
	return a + b;
}
class Sub
{
public:
	int sub(int a, int b)
	{
		return a - b;
	}
};
int main()
{
	//表示绑定函数plus 参数分别由调用 func1 的第一,二个参数指定
	function<int(int, int)> func1 = bind(Plus, placeholders::_1, placeholders::_2);
	//auto func1 = std::bind(Plus, placeholders::_1, placeholders::_2);
	
	//func2的类型为 function<int(int, int)> 与func1类型一样
	//表示绑定函数 plus 的第一,二为: 1, 2
	auto func2 = bind(Plus, placeholders::_1, placeholders::_2);
	cout << func1(1, 2) << endl;
	cout << func2(1, 2) << endl;

	Sub s;
	// 绑定成员函数
	function<int(int, int)> func3 = bind(&Sub::sub, s, placeholders::_1, placeholders::_2);
	// 参数调换顺序
	std::function<int(int, int)> func4 = std::bind(&Sub::sub, s,
		placeholders::_2, placeholders::_1);
	cout << func3(1, 2) << endl;
	cout << func4(1, 2) << endl;


	return 0;
}

2.线程库

2.1thread类的简单介绍

在C++11之前,涉及到多线程问题,都是和平台相关的,比如windows和linux下各有自己的接口,这使得代码的可移植性比较差。C++11中最重要的特性就是对线程进行支持了,使得C++在并行编程时不需要依赖第三方库,而且在原子操作中还引入了原子类的概念。要使用标准库中的线程,必须包含< thread >头文件。(C++11中线程类)

http://www.cplusplus.com/reference/thread/thread/?kw=thread

注意:

1. 线程是操作系统中的一个概念,线程对象可以关联一个线程,用来控制线程以及获取线程的状态

2. 当创建一个线程对象后,没有提供线程函数,该对象实际没有对应任何线程。

#include<thread>
int main()
{
	thread t1;
	cout << t1.get_id() << endl;
}

get_id()的返回值类型为id类型,id类型实际为std::thread命名空间下封装的一个类,该类中 包含了一个结构体:

// vs下查看
typedef struct
{ /* thread identifier for Win32 */
	void* _Hnd; /* Win32 HANDLE */
	unsigned int _Id;
} _Thrd_imp_t;

3. 当创建一个线程对象后,并且给线程关联线程函数,该线程就被启动,与主线程一起运行。 线程函数一般情况下可按照以下三种方式提供:

函数指针

lambda表达式

函数对象

void ThreadFunc(int a)
{
	cout << "Thread1" << a << endl;
}
class TF
{
public:
	void operator()()
	{
		cout << "Thread3" << endl;
	}
};
int main()
{
	// 线程函数为函数指针
	thread t1(ThreadFunc, 1);

	// 线程函数为lambda表达式
	thread t2([]{cout << "Thread2" << endl; });

	// 线程函数为函数对象
	TF tf;
	thread t3(tf);

	t1.join();
	t2.join();
	t3.join();
    cout << "Main thread!" << endl;

	return 0;
}

4. thread类是防拷贝的,不允许拷贝构造以及赋值,但是可以移动构造和移动赋值,即将一个线程对象关联线程的状态转移给其他线程对象,转移期间不影响线程的执行。

5. 可以通过jionable()函数判断线程是否是有效的,如果是以下任意情况,则线程无效

采用无参构造函数构造的线程对象

线程对象的状态已经转移给其他线程对象

线程已经调用jion或者detach结束

面试题:并发与并行的区别?

  1. 并发:并发是指在同一个时间段内,两个或多个事件(或任务、程序)都在执行,但这些事件在微观上并不是同时发生的,而是有时间上的重叠。也就是说,在并发情况下,虽然多个事件都在处理中,但在同一时刻点上,通常只有一个事件在处理机上运行。并发侧重于在同一个实体(如处理器)上处理多个任务。
  2. 并行:并行则是指两个或多个事件在同一时刻点上都在执行。在并行情况下,每个事件都被分配给一个独立的处理器(或处理单元),这些处理器同时处理这些事件。因此,并行是在不同实体(如多个处理器)上同时处理多个任务。

2.2线程函数参数

线程函数的参数是以值拷贝的方式拷贝到线程栈空间中的,因此:即使线程参数为引用类型,在线程中修改后也不能修改外部实参,因为其实际引用的是线程栈中的拷贝,而不是外部实参。

void ThreadFunc1(int& x)
{
	x += 10;
}
void ThreadFunc2(int* x)
{
	*x += 10;
}
int main()
{
	int a = 10;
	// 在线程函数中对a修改,不会影响外部实参,因为:线程函数参数虽然是引用方式,但其实际引用的是线程栈中的拷贝
	thread t1(ThreadFunc1, a);
	t1.join();
	cout << a << endl;

	// 如果想要通过形参改变外部实参时,必须借助std::ref()函数
	thread t2(ThreadFunc1, ref(a));
	t2.join();
	cout << a << endl;

	// 地址的拷贝
	thread t3(ThreadFunc2, &a);
	t3.join();
	cout << a << endl;
	return 0;
}

注意:如果是类成员函数作为线程参数时,必须将this作为线程函数参数。

2.3原子性操作库(atomic)

多线程最主要的问题是共享数据带来的问题(即线程安全)。如果共享数据都是只读的,那么没问题,因为只读操作不会影响到数据,更不会涉及对数据的修改,所以所有线程都会获得同样的数据。但是,当一个或多个线程要修改共享数据时,就会产生很多潜在的麻烦。比如:

unsigned long sum = 0L;

void fun(size_t num)
{
	for (size_t i = 0; i < num; ++i)
		sum++;
}

int main()
{
	cout << "Before joining,sum = " << sum << std::endl;
	thread t1(fun, 10000000);
	thread t2(fun, 10000000);
	t1.join();
	t2.join();
	cout << "After joining,sum = " << sum << std::endl;
	return 0;

}

运行截图:

我们会发现不管我们运行多少次,答案几乎都是不正确的答案,这就是多线程并发导致的线程安全问题。

C++98中传统的解决方式:可以对共享修改的数据进行加锁保护。

#include<mutex>

mutex m;
unsigned long sum = 0L;
void fun(size_t num)
{
	for (size_t i = 0; i < num; ++i)
	{
		m.lock();
		sum++;
		m.unlock();
	}
}
int main()
{
	cout << "Before joining,sum = " << sum << std::endl;
	thread t1(fun, 10000000);
	thread t2(fun, 10000000);
	t1.join();
	t2.join();
	cout << "After joining,sum = " << sum << std::endl;
	return 0;
}

运行截图:

虽然加锁可以解决,但是加锁有一个缺陷就是:只要一个线程在对sum++时,其他线程就会被阻塞,会影响程序运行的效率,而且锁如果控制不好,还容易造成死锁。

因此C++11中引入了原子操作。所谓原子操作:即不可被中断的一个或一系列操作,C++11引入的原子操作类型,使得线程间数据的同步变得非常高效。

注意:需要使用以上原子操作变量时,必须添加头文件

#include<atomic>

atomic_long sum{0};
void fun(size_t num)
{
	for (size_t i = 0; i < num; ++i)
		sum++;   // 原子操作
}
int main()
{
	cout << "Before joining, sum = " << sum << std::endl;
	thread t1(fun, 1000000);
	thread t2(fun, 1000000);
	t1.join();
	t2.join();

	cout << "After joining, sum = " << sum << std::endl;
	return 0;
}

运行截图:

在C++11中,程序员不需要对原子类型变量进行加锁解锁操作,线程能够对原子类型变量互斥的访问

更为普遍的,程序员可以使用atomic类模板,定义出需要的任意原子类型

template <class T>
atomic<T> t;  // 声明一个类型为T的原子类型变量t

注意:原子类型通常属于"资源型"数据,多个线程只能访问单个原子类型的拷贝,因此在C++11 中,原子类型只能从其模板参数中进行构造,不允许原子类型进行拷贝构造、移动构造以及 operator=等,为了防止意外,标准库已经将atmoic模板类中的拷贝构造、移动构造、赋值运算符重载默认删除掉了。

int main()
{
	atomic<int> a1(0);
	//atomic<int> a2(a1);   // 编译失败
	atomic<int> a2(0);
	//a2 = a1;               // 编译失败
	return 0;
}

2.4lock_guard与unique_lock

在多线程环境下,如果想要保证某个变量的安全性,只要将其设置成对应的原子类型即可,即高效又不容易出现死锁问题。但是有些情况下,我们可能需要保证一段代码的安全性,那么就只能通过锁的方式来进行控制。

比如:一个线程对变量number进行加100次,另外一个减100次,每次操作加一或者减一之后,输出number的结果,要求:number最后的值为1。

int number = 1;
mutex g_lock;
int ThreadProc1()
{
	for (int i = 0; i < 100; i++)
	{
		g_lock.lock();
		++number;
		cout << "thread 1 :" << number << endl;
		g_lock.unlock();
	}
	return 0;
}

int ThreadProc2()
{
	for (int i = 0; i < 100; i++)
	{
		g_lock.lock();
		--number;
		cout << "thread 2 :" << number << endl;
		g_lock.unlock();
	}
	return 0;
}

int main()
{
	thread t1(ThreadProc1);
	thread t2(ThreadProc2);
	t1.join();
	t2.join();
	cout << "number:" << number << endl;
	system("pause");
	return 0;
}

运行截图:

上述代码的缺陷:锁控制不好时,可能会造成死锁,最常见的比如在锁中间代码返回,或者在锁的范围内抛异常。因此:C++11采用RAII的方式对锁进行了封装,即lock_guard和unique_lock。

2.5mutex的种类

在C++11中,Mutex总共包了四个互斥量的种类:

1. std::mutex

C++11提供的最基本的互斥量,该类的对象之间不能拷贝,也不能进行移动。mutex最常用 的三个函数:

注意,线程函数调用lock()时,可能会发生以下三种情况:

1.如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用unlock之前, 该线程一直拥有该锁;

2.如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住;

3.如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。

线程函数调用try_lock()时,可能会发生以下三种情况:

1.如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用unlock释放互斥量;

2.如果当前互斥量被其他线程锁住,则当前调用线程返回false,而并不会被阻塞掉;

3.如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。

2. std::recursive_mutex

允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权, 释放互斥量时需要调用与该锁层次深度相同次数的unlock(),除此之外, std::recursive_mutex 的特性和 std::mutex 大致相同。

3. std::timed_mutex

比 std::mutex 多了两个成员函数,try_lock_for(),try_lock_until() 。

try_lock_for()

接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与 std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回 false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。

try_lock_until()

接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住, 如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。

4. std::recursive_timed_mutex

2.6lock_guard

std::lock_gurad 是 C++11 中定义的模板类。定义如下:

template<class _Mutex>
class lock_guard
{
public:
	// 在构造lock_gard时,_Mtx还没有被上锁
	explicit lock_guard(_Mutex& _Mtx)
		: _MyMutex(_Mtx)
	{
		_MyMutex.lock();
	}
	// 在构造lock_gard时,_Mtx已经被上锁,此处不需要再上锁
	lock_guard(_Mutex& _Mtx, adopt_lock_t)
		: _MyMutex(_Mtx)
	{}
	~lock_guard() _NOEXCEPT
	{
		_MyMutex.unlock();
	}
	lock_guard(const lock_guard&) = delete;
	lock_guard& operator=(const lock_guard&) = delete;
private:
	_Mutex& _MyMutex;
};

通过上述代码可以看到,lock_guard类模板主要是通过RAII的方式,对其管理的互斥量进行了封装,在需要加锁的地方,只需要用上述介绍的任意互斥体实例化一个lock_guard,调用构造函数成功上锁,出作用域前,lock_guard对象要被销毁,调用析构函数自动解锁,可以有效避免死锁问题。

lock_guard的缺陷:太单一,用户没有办法对该锁进行控制,因此C++11又提供了 unique_lock。

2.7unique_lock

lock_gard类似,unique_lock类模板也是采用RAII的方式对锁进行了封装,并且也是以独占所有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝。在构造(或移动 (move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的 unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。使用以上类型互斥量实例化 unique_lock的对象时,自动调用构造函数上锁,unique_lock对象销毁时自动调用析构函数解锁,可以很方便的防止死锁问题

与lock_guard不同的是,unique_lock更加的灵活,提供了更多的成员函数:

上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock;

修改操作:移动赋值、交换(swap:与另一个unique_lock对象互换所管理的互斥量所有权)、释放(release:返回它所管理的互斥量对象的指针,并释放所有权);

获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()(与owns_lock()的功能相 同)、mutex(返回当前unique_lock所管理的互斥量的指针)。

c++ 11: lock_guard/unique_lock详解_c++ lockguard-CSDN博客

3.支持两个线程交替打印,一个打印奇数,一个打印偶数

本例主要演示了condition_variable(条件变量)的使用,condition_variable他们用来进行线程之间的互相通知。condition_variable和Linux posix的条件变量并没有什么大的区别,主 要还是面向对象实现的。条件变量的文档如下:https://cplusplus.com/reference/condition_variable/

#include <condition_variable>

void two_thread_print()
{
	mutex mtx;
	condition_variable c;
	int n = 100;
	bool flag = true;
	thread t1([&] {
		int i = 0;
		while (i < n)
		{
			unique_lock<mutex> lock(mtx);
			c.wait(lock, [&]()->bool {return flag; });
			cout << i << endl;
			flag = false;
			i += 2;//偶数
			c.notify_one();
		}
		});

	thread t2([&] {
		int j = 1;
		while (j < n)
		{
			unique_lock<mutex> lock(mtx);
			c.wait(lock, [&]()->bool {return !flag; });
			cout << j << endl;
			j += 2; // 奇数
			flag = true;
			c.notify_one();
		}
		});
	t1.join();
	t2.join();

}

int main()
{
	two_thread_print();

	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/893750.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

鼠标市场洞察:数据分析揭示消费趋势!

鼠标整体数据分析 一. 概述 本报告基于从淘宝商品搜索接口和淘宝精确月销量接口中提取的数据&#xff0c;分析了前百个品牌在销售额上的占比情况。分析涵盖了销售额和占比的数据&#xff0c;为决策提供了依据。(以上两个接口有需求的可以找我要链接&#xff09;&#xff08;数…

概率 随机变量以及分布

一、基础定义及分类 1、随机变量 随机变量是一个从样本空间&#xff08;所有可能结果的集合&#xff09;到实数集的函数。&#xff08;随机变量的值可以是离散的&#xff0c;也可以是连续的。 &#xff09; 事件可以定义为随机变量取特定值的集合。 2、离散型随机变量 随机变…

Unity开发Hololens项目

Unity打包Hololens设备 目录Visual Studio2019 / Visual Studio2022 远端部署设置Visual Studio2019 / Visual Studio2022 USB部署设置Hololens设备如何查找自身IPHololens设备门户Unity工程内的打包设置 目录 记录下自己做MR相关&#xff1a;Unity和HoloLens设备的历程。 Vi…

软件企业选择第三方软件检测机构有哪些好处?

在软件开发的当今时代&#xff0c;确保软件的质量和性能是每个企业面临的挑战&#xff0c;因此软件检测公正必不可少。随着市场的需求&#xff0c;越来越多企业会选择将该项工作交由第三方软件检测机构进行。第三方软件检测机构指独立于软件开发方和需求方的第三方机构&#xf…

5、JavaScript(二)

17.对象 1、对象&#xff1a;⽤来存储多个数据的 是由多个键值对/key value对组成的 ⽤来描述⼀个事物的 相当于多个变量的集合 2、格式 &#xff1a;{key:value,key:value} 键/值对 属性名&#xff1a;属性值 3、对象的属性值是不限制数据类型的&#xff0c;甚至还可以是对…

CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)

往期精彩内容&#xff1a; 时序预测&#xff1a;LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较 全是干货 | 数据集、学习资料、建模资源分享&#xff01; EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现&#xff08;一&#xff09;EMD-CSDN博客 EMD、EEM…

JavaWeb合集05-SpringBoot基础知识

五、SpringBoot基础知识 0、实用方法 0.1 动态获取某个文件路径 //getResource( name:" emp.txt") 更具名称获取资源链接&#xff1b;getFile() 获取文件对象 String filePaththis.getClass().getClassLoader().getResource( name:" emp.txt").getFile(…

数仓建设:如何设计数据治理考评规则?

目录 0 为什么要数据治理&#xff1f; 2 什么是数据治理&#xff1f; ​​​​​​​3 如何数据治理如何落地&#xff1f; ​​​​​​​4 数据考评的指标 5 考核指标列表 6 数仓团队应如何建设&#xff1f; 6.1 ​​​​​​​考评指标分析 6.2 ​​​健康分计算规则…

[Linux#67][IP] 报头详解 | 网络划分 | CIDR无类别 | DHCP动态分配 | NAT转发 | 路由器

目录 一. IP协议头格式 学习任何协议前的两个关键问题 IP 报头与有效载荷分离 分离方法 为什么需要16位总长度 如何交付 二. 网络通信 1.IP地址的划分理念 2. 子网管理 3.网络划分 CIDR&#xff08;无类别域间路由&#xff09; 目的IP & 当前路由器的子网掩码 …

ubuntu服务器监控程序崩溃自动重启

环境&#xff1a;监控程序运行情况分为两种情况&#xff0c;一种带界面&#xff0c;一种控制台程序&#xff0c;带界面程序采用脚本监控方式&#xff0c;不带界面采用Supervisor工具监控。 1. 自动重启带界面程序&#xff1a; #!/bin/sh while true; do processExistps aux | …

一些简单的编程题(Java与C语言)

引言&#xff1a; 这篇文章呢&#xff0c;小编将会举一些简单的编程题用来帮助大家理解一下Java代码&#xff0c;并且与C语言做个对比&#xff0c;不过这篇文章所出现的题目小编不会向随缘解题系列里面那样详细的讲解每一到题&#xff0c;本篇文章的主要目的是帮助小编和读者们…

【YOLOv11改进[CONV]】使用SAconv模块魔改YOLOv11 + 含全部代码和详细修改方式

本文将进行在YOLOv11中使用SAconv魔改v11,文中含全部代码、详细修改方式。助您轻松理解改进的方法。 改进前和改进后的参数对比如下: 目录 一 SAconv 二 使用SAconv魔改v11

构建 effet.js 人脸识别交互系统的实战之路

构建 effet.js 人脸识别交互系统的实战之路 文章目录 构建 effet.js 人脸识别交互系统的实战之路前言一、什么是effet.js二、为什么需要使用effet.js四、effet.js能做什么五、使用步骤1.引入库2.main.js中注册全局2.使用3.效果图 六、其他模式讲解人脸打卡人脸添加睡眠检测 在h…

[产品管理-46]:产品组合管理中的项目平衡与管道平衡的区别

目录 一、项目平衡 1.1 概述 1.2 项目的类型 1、根据创新程度和开发方式分类 2、根据产品开发和市场周期分类 3、根据风险程度分类 4、根据市场特征分类 5、根据产品生命周期分类 1.3 产品类型的其他分类 1、按物理形态分类 2、按功能或用途分类 3、按技术或创新程…

OpenCV高级图形用户界面(12)用于更改指定窗口的大小函数resizeWindow()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::resizeWindow() 函数用于更改指定窗口的大小。这使得你可以根据需要调整窗口的宽度和高度。 注释 指定的窗口大小是指图像区域的大小。工具栏…

必学的20个Excel表格操作python脚本!

示例数据 (bank_data.xlsx) 首先&#xff0c;我们创建一个示例的Excel文件bank_data.xlsx&#xff0c;并填充一些示例数据。 import pandas as pd # 创建示例数据 data { 客户ID: [1, 2, 3, 4, 5], 姓名: [张三, 李四, 王五, 赵六, 孙七], 联系方式: [13800000000, 13900000…

get请求(豆瓣电影第一页爬取)

目录 &#xff08;一&#xff09;需要的python库 import urllib.request import urllib.parse &#xff08;二&#xff09;找到url和headers url headers &#xff08;三&#xff09;创建一个请求对象和返回一个响应对象 创建一个请求对象 返回一个响应对象 &#xff08…

【网络篇】计算机网络——网络层详述(笔记)

目录 一、网络层 1. 网络传输流程简述 2. 转发和路由选择 3. 控制平面&#xff1a;SDN 方法 二、路由器工作原理 1. 概述 &#xff08;1&#xff09;输入端口 &#xff08;2&#xff09;交换结构 &#xff08;3&#xff09;输出端口 &#xff08;4&#xff09;路由选…

特步引入IPD管理,钉钉项目 Teambition 助力高效产品研发管理

中国是全球第二大消费市场&#xff0c;运动鞋服行业拥有着巨大的发展潜力。在过去五年时间里&#xff0c;随着中国产品品牌和质量的提升&#xff0c;体育市场的占有率格局发生了显著变化&#xff0c;不同于部分国际品牌巨头营收持续减弱&#xff0c;国产领军体育运动品牌「特步…

(C/C++)文件

目录 1. 为什么使用文件 2. 什么是文件 2.1 程序文件 2.2 数据文件 3. 文件的打开和关闭 3.1 文件指针 3.2 文件的打开和关闭 4. 文件的顺序读写 fputc fgetc fputs fgets fprintf fscanf fwrite fread sprintf和sscanf snprintf ​编辑 4对比一组函数(prin…