CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)

 往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较

全是干货 | 数据集、学习资料、建模资源分享!

EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(一)EMD-CSDN博客

EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(二)EEMD

EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(三)FEEMD-CSDN博客

EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(四)CEEMD-CSDN博客

EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客

拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型-CSDN博客

风速预测(一)数据集介绍和预处理_风速数据在哪里下载-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客

风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型-CSDN博客

前言

本文基于前期介绍的风速数据(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与混合预测模型(BiLSTM-Attention + ARIMA)的方法,以提高时间序列数据的预测性能。该方法的核心是使用CEEMDAN算法对时间序列进行分解,接着利用BiLSTM-Attention模型和ARIMA模型对分解后的数据进行建模,最终通过集成方法结合两者的预测结果。

风速数据集的详细介绍可以参考下文:

风速预测(一)数据集介绍和预处理_weather in szeged 2006-2016-CSDN博客

1 风速数据CEEMDAN分解与可视化

1.1 导入数据

1.2 CEEMDAN分解

根据分解结果看,CEEMDAN一共分解出11个分量,我们大致把前7个高频分量作为BiLSTM-Attention模型的输入进行预测,后4个低频分量作为ARIMA模型的输入进行预测

2 数据集制作与预处理

2.1 划分数据集

按照8:2划分训练集和测试集, 然后再按照前7后4划分分量数据

2.2 设置滑动窗口大小为7,制作数据集

​​​​​​


# 定义滑动窗口大小
window_size = 7
# 分量划分分界
imf_no  = 7  
 # 第一步,划分数据集
dataset1, dataset2 = make_wind_dataset(wind_emd_imfs, imf_no)
# 第二步,制作数据集标签  滑动窗口
# BiLSTM-Attention 模型数据
train_set1, train_label1 = data_window_maker(dataset1[0], window_size)
test_set1, test_label1 = data_window_maker(dataset1[1], window_size)

# ARIMA 模型数据
train_data_arima = dataset2[0]
test_data_arima = dataset2[1]

# 保存数据
dump(train_set1, 'train_set1')
dump(train_label1, 'train_label1')
dump(test_set1, 'test_set1')
dump(test_label1, 'test_label1')

dump(train_data_arima, 'train_data_arima')
dump(test_data_arima, 'test_data_arima')

分批保存数据,用于不同模型的预测

3 基于CEEMADN的BiLSTM-Attention模型预测

3.1 数据加载,训练数据、测试数据分组,数据分batch


# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 加载数据集
def dataloader(batch_size, workers=2):
    # 训练集
    train_set = load('train_set1')
    train_label = load('train_label1')
    # 测试集
    test_set = load('test_set1')
    test_label = load('test_label1')

    # 加载数据
    train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_set, train_label),
                                   batch_size=batch_size, num_workers=workers, drop_last=True)
    test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_set, test_label),
                                  batch_size=batch_size, num_workers=workers, drop_last=True)
    return train_loader, test_loader

batch_size = 64
# 加载数据
train_loader, test_loader = dataloader(batch_size)

3.2 定义CEEMDAN-BiLSTM-Attention预测模型

注意:输入风速数据形状为 [64, 7, 7], batch_size=64,  维度7维代表7个分量,7代表序列长度(滑动窗口取值)。

3.3 定义模型参数

# 定义模型参数
batch_size = 64
input_len = 48   # 输入序列长度为96 (窗口值)
input_dim = 7    # 输入维度为7个分量
hidden_layer_sizes = [32, 64] # LSTM 层 结构 隐藏层神经元个数
attention_dim = hidden_layer_sizes[-1]  # 注意力层维度 默认为 LSTM输出层维度
output_size = 1 # 单步输出

model = BiLSTMAttentionModel(batch_size, input_len, input_dim, attention_dim, hidden_layer_sizes, output_size=1)  

# 定义损失函数和优化函数
model = model.to(device)
loss_function = nn.MSELoss()  # loss
learn_rate = 0.003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

3.4 模型训练

训练结果

100个epoch,MSE 为0.00559,BiLSTM-Attention预测效果良好,适当调整模型参数,还可以进一步提高模型预测表现。

注意调整参数:

  • 可以适当增加BiLSTM层数和隐藏层的维度,微调学习率;

  • 调整注意力维度数,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

保存训练结果和预测数据,以便和后面ARIMA模型的结果相组合。

4 基于ARIMA的模型预测

传统时序模型(ARIMA等模型)教程如下:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较

4.1 数据加载

训练数据、测试数据分组,四个分量,划分四个数据集


# 加载数据
from joblib import dump, load
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')

# 训练集
train_set = load('train_data_arima')
# 测试集
test_set = load('test_data_arima')

# IMF1-Model1
model1_train = train_set[0, :]
model1_test = test_set[0, :]
# IMF2-Model2
model2_train = train_set[1, :]
model2_test = test_set[1, :]
# IMF3-Model3
model3_train = train_set[2, :]
model3_test = test_set[2, :]
# IMF4-Model4
model4_train = train_set[3, :]
model4_test = test_set[3, :]

4.2 介绍一个分量预测过程(其他分量类似)

第一步,单位根检验和差分处理

ADF检验P值远小于0.05,故拒绝原假设,即数据是平稳的时间序列数据,也确定了d=0

第二步,模型识别,采用AIC指标进行参数选择

采用AIC指标进行参数选择,得到最小的AIC值的组合为p=2,q=0,选择其作为模型进行拟合,因此针对原数据可知最终确定模型为ARIMA(2,0,0)(结合代码指标结果来看)

第三步,模型预测

第四步,模型评估

保存预测的数据,其他分量预测与上述过程一致,保留最后模型结果即可。

5 结果可视化和模型评估

5.1 组合预测,加载各模型的预测结果


# 训练集
arima_train_set = load('train_data_arima')
# 测试集
arima_test_set = load('test_data_arima')

# IMF1-Model1
model1_imf_arima_pre = load('model1_imf_arima_pre')
# IMF2-Model2
model2_imf_arima_pre = load('model2_imf_arima_pre')
# IMF3-Model3
model3_imf_arima_pre = load('model3_imf_arima_pre')
# IMF4-Model4
model4_imf_arima_pre = load('model4_imf_arima_pre')

# BiLSTM-Attention
original_label_bilstmatt = load('original_label_bilstmatt')
pre_data_bilstmatt = load('pre_data_bilstmatt')

5.2 结果可视化

5.3 模型评估

由分量预测结果可见,前7个分量在BiLSTM-Attention预测模型下拟合效果良好,分量9在ARIMA模型的预测下,拟合程度比较好,其他低频分量拟合效果弱一点,调整参数可增强拟合效果。

6  代码、数据整理如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/893739.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JavaWeb合集05-SpringBoot基础知识

五、SpringBoot基础知识 0、实用方法 0.1 动态获取某个文件路径 //getResource( name:" emp.txt") 更具名称获取资源链接;getFile() 获取文件对象 String filePaththis.getClass().getClassLoader().getResource( name:" emp.txt").getFile(…

数仓建设:如何设计数据治理考评规则?

目录 0 为什么要数据治理? 2 什么是数据治理? ​​​​​​​3 如何数据治理如何落地? ​​​​​​​4 数据考评的指标 5 考核指标列表 6 数仓团队应如何建设? 6.1 ​​​​​​​考评指标分析 6.2 ​​​健康分计算规则…

[Linux#67][IP] 报头详解 | 网络划分 | CIDR无类别 | DHCP动态分配 | NAT转发 | 路由器

目录 一. IP协议头格式 学习任何协议前的两个关键问题 IP 报头与有效载荷分离 分离方法 为什么需要16位总长度 如何交付 二. 网络通信 1.IP地址的划分理念 2. 子网管理 3.网络划分 CIDR(无类别域间路由) 目的IP & 当前路由器的子网掩码 …

ubuntu服务器监控程序崩溃自动重启

环境:监控程序运行情况分为两种情况,一种带界面,一种控制台程序,带界面程序采用脚本监控方式,不带界面采用Supervisor工具监控。 1. 自动重启带界面程序: #!/bin/sh while true; do processExistps aux | …

一些简单的编程题(Java与C语言)

引言: 这篇文章呢,小编将会举一些简单的编程题用来帮助大家理解一下Java代码,并且与C语言做个对比,不过这篇文章所出现的题目小编不会向随缘解题系列里面那样详细的讲解每一到题,本篇文章的主要目的是帮助小编和读者们…

【YOLOv11改进[CONV]】使用SAconv模块魔改YOLOv11 + 含全部代码和详细修改方式

本文将进行在YOLOv11中使用SAconv魔改v11,文中含全部代码、详细修改方式。助您轻松理解改进的方法。 改进前和改进后的参数对比如下: 目录 一 SAconv 二 使用SAconv魔改v11

构建 effet.js 人脸识别交互系统的实战之路

构建 effet.js 人脸识别交互系统的实战之路 文章目录 构建 effet.js 人脸识别交互系统的实战之路前言一、什么是effet.js二、为什么需要使用effet.js四、effet.js能做什么五、使用步骤1.引入库2.main.js中注册全局2.使用3.效果图 六、其他模式讲解人脸打卡人脸添加睡眠检测 在h…

[产品管理-46]:产品组合管理中的项目平衡与管道平衡的区别

目录 一、项目平衡 1.1 概述 1.2 项目的类型 1、根据创新程度和开发方式分类 2、根据产品开发和市场周期分类 3、根据风险程度分类 4、根据市场特征分类 5、根据产品生命周期分类 1.3 产品类型的其他分类 1、按物理形态分类 2、按功能或用途分类 3、按技术或创新程…

OpenCV高级图形用户界面(12)用于更改指定窗口的大小函数resizeWindow()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 cv::resizeWindow() 函数用于更改指定窗口的大小。这使得你可以根据需要调整窗口的宽度和高度。 注释 指定的窗口大小是指图像区域的大小。工具栏…

必学的20个Excel表格操作python脚本!

示例数据 (bank_data.xlsx) 首先,我们创建一个示例的Excel文件bank_data.xlsx,并填充一些示例数据。 import pandas as pd # 创建示例数据 data { 客户ID: [1, 2, 3, 4, 5], 姓名: [张三, 李四, 王五, 赵六, 孙七], 联系方式: [13800000000, 13900000…

get请求(豆瓣电影第一页爬取)

目录 (一)需要的python库 import urllib.request import urllib.parse (二)找到url和headers url headers (三)创建一个请求对象和返回一个响应对象 创建一个请求对象 返回一个响应对象 &#xff08…

【网络篇】计算机网络——网络层详述(笔记)

目录 一、网络层 1. 网络传输流程简述 2. 转发和路由选择 3. 控制平面:SDN 方法 二、路由器工作原理 1. 概述 (1)输入端口 (2)交换结构 (3)输出端口 (4)路由选…

特步引入IPD管理,钉钉项目 Teambition 助力高效产品研发管理

中国是全球第二大消费市场,运动鞋服行业拥有着巨大的发展潜力。在过去五年时间里,随着中国产品品牌和质量的提升,体育市场的占有率格局发生了显著变化,不同于部分国际品牌巨头营收持续减弱,国产领军体育运动品牌「特步…

(C/C++)文件

目录 1. 为什么使用文件 2. 什么是文件 2.1 程序文件 2.2 数据文件 3. 文件的打开和关闭 3.1 文件指针 3.2 文件的打开和关闭 4. 文件的顺序读写 fputc fgetc fputs fgets fprintf fscanf fwrite fread sprintf和sscanf snprintf ​编辑 4对比一组函数(prin…

Linux驱动编程 - RTC子系统

目录 简介: 一、代码分析 1、RTC子系统初始化 2、注册RTC设备驱动 2.1 rtc_dev_prepare(rtc) 3、总结 二、ds1302 驱动分析 三、rtc设置和测试工具 1、date读/写系统时间 2、hwclock读/写RTC 简介: Linux中RTC设备驱动是一个标准的字符设备驱动&…

ZBrush和3D-Coat各自的优缺点是什么?

zbrush支持的模型面数高英文界面,3d coat支持的模型面数比zbrsh低有中文界 ZBrush优缺点 1、ZBrush优点: zbrush是高精度建模poser制作的首选。可搭配雕刻版使用,主要为烘焙高细节的铁图建模。因为是高精度模型,不适用于动画和游…

《Spring Cloud Config与Bus整合实现微服务配置自动刷新》

目录 Config与Bus整合自动刷新步骤1:安装RabbitMQ并启动RabbitMQ的安装 步骤2:创建项目创建Eureka Server创建config-server 步骤3: 添加依赖步骤4:Config Client步骤5:测试运行问题一问题二 总结 Config与Bus整合自动…

python创建树状图

python创建树状图 想法:如何去记住每个页面的元素,如何实现不同页面的导航,如何从主页面遍历每一个页面的每一个元素 1.创建数据结构存储 2.树状图正好是我们想要的结构体 class TreeNode:def __init__(self, data):self.data dataself.ch…

电感电容谐振原理及Matlab仿真

一、电感电容谐振原理概述 电感电容谐振(LC谐振)是一种电路现象,它发生在电感器(L)和电容器(C)通过适当的方式连接时,电路中电流和电压之间形成共振。在这种共振状态下,…

2025选题推荐|基于SpringBoot的幼儿园智能管理与监控系统的设计与实现

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,…