linux线程 | 线程的控制(二)

        前言: 本节内容是线程的控制部分的第二个小节。 主要是列出我们的线程控制部分的几个细节性问题以及我们的线程分离。这些都是需要大量的代码去进行实验的。所以, 准备好接受新知识的友友们请耐心观看。 现在开始我们的学习吧。

        ps:本节内容适合了解线程的基本控制(创建, 等待, 终止)的友友们进行观看哦。 

目录

线程的栈

准备文件

makefile

核心代码

创建test_i栈区变量

利用全局变量拿到别的执行流数据  

局部性存储

线程分离

主线程分离

自己分离自己 


        首先我们的系统之中,有下面四种情况。 

        左上角是只有一个线程一个进程的情况, 右上角是一个进程多个线程的情况。 左下角是多个进程里面有一个线程的情况。 右下角是多个进程里面有多个进程的情况。

        那么, 其实我们的linux当中, 其实是分为用户级线程和内核LWP。 这两个加起来, 才是我们的linux下真正的线程。 其中, 我们的linux其实是属于用户级线程。 里面的用户级线程与内核LWP的比率为 1 : 1

线程的栈

        现在我们谈一谈这个栈, 这个栈并不是简简单单的用来入栈出栈, 定义变量。 实际上, 我们的每一条执行流的本质就是一条调用链, 从main函数开始从上往下执行, 我们会依次执行各种函数, 当我们进行调用函数时, 本质上就是在栈当中先为该函数形成一个独立的栈帧结构。 所以这个栈其实就是被整体使用的, 依次把一个一个地调用链所对应的栈帧结构宏观上在栈上依次开辟。 然后我们每一次定义变量, 都是在栈帧结构里面去定义的, 这个栈结构, 本质是为了支持我们在应用层来完成我们的整个的调用链所对应的临时空间的开辟和释放。 所以, 这些线程为了能够拥有独立的调用链, 就必须拥有属于自己的调用栈!

        现在我们利用代码来测试一下:

准备文件

        准备好两个文件

makefile

        再将makefile准备出来

mythread.exe:mythread.cpp
	g++ -o $@ $^ -std=c++11 -lpthread
.PHONY:clean
clean:
	rm -rf mythread.exe

核心代码

        这串代码分为几个板块: 定义线程的信息的结构体、线程信息的初始化、将整形转化为字符串类型、线程的执行代码、主函数

#include<iostream>
using namespace std;
#include<pthread.h>
#include<vector>
#include<unistd.h>

#define NUM 5  //创建多个执行流, NUM为执行流个数

using namespace std;


//线程的数据信息。 
struct threadData
{
    string threadname;
};

//将整形以十六进制转化为字符串类型
string toHex(pthread_t tid)
{
    char buffer[128];
    snprintf(buffer, sizeof(buffer), "0x%x", tid);

    return buffer;
}

//线程信息的初始化
void InitthreadData(threadData* td, int number)
{
    td->threadname = "thread-" + to_string(number);
}

//新线程的执行代码
void* threadRuntine(void* args)
{
    threadData* td = static_cast<threadData*>(args);

    int i = 0;
    while (i < 5)
    {
        cout << "pid: " << getpid() << ", tid: " 
            << toHex(pthread_self()) << ", name: " 
            << td->threadname << endl;
    
        i++;
        sleep(2);
    }
    delete td;
    return nullptr;
}


int main()
{   
    vector<threadData*> tids;
    //我们创建多个执行流, 为了能够验证每个线程都有一个独立的栈结构
    for (int i = 0; i < NUM; i++)
    {
        //每一个线程都要有一个线程的信息, 并且这个线程的信息我们在堆区开辟, 那么所有的线程其实都能够看到这个线程的信息, 因为堆区是共享的。
        threadData* td = new threadData();
          
        pthread_t tid;
        InitthreadData(td, i); //初始化线程的信息。
        pthread_create(&tid, nullptr, threadRuntine, td);
        tids.push_back(tid);
        sleep(2);
    }

    for (int i = 0; i < tids.size(); i++)
    {
        pthread_join(tids[i], nullptr);
    }
    
    return 0;
}

然后我们就能看到这种情况。

创建test_i栈区变量

        在线程的执行代码块里面添加一个test_i变量, 然后打印这个变量。 

//新线程的执行代码
void* threadRuntine(void* args)
{
    threadData* td = static_cast<threadData*>(args);
    int test_i = 0;
    
    int i = 0;
    while (i < 5)
    {
        cout << "pid: " << getpid() << ", tid: " 
            << toHex(pthread_self()) << ", name: " 
            << td->threadname 
            << ", test_i: " << test_i << ", &test_i: " << &test_i << endl;
    
        i++;
        test_i++;
        sleep(2);
    }
    delete td;
    return nullptr;
}

        下面就是运行结果, 从图中我们可以看到, 每一个执行流都有自己的独有的一份test_i, 并且他们的值都是从零开始, 一直加到4。而且, 每个变量的地址都不一样, 所以每个线程都会有自己独立的栈结构。当我们的线程执行到threadRuntine, 就会在自己的栈结构里面开辟自己的栈帧, 然后创建test_i也是在自己刚刚创建的栈帧中创建。 

利用全局变量拿到别的执行流数据  

        创建一个全局变量p

        然后在线程执行的代码里面, 写上要拿哪一个线程的什么数据:

        为了确认真正的拿到了这个数据, 在程序的最后打印这个数据:

下面是运行结果:

        由上面的结果我们其实就能够知道:在线程中根本没有秘密, 只不过要求线程有独立的栈, 但是这个独立的栈本质上还是在地址空间的共享区中。 所以, 我们每个线程叫做都有一个独立的栈结构, 而不是一个私有的栈结构。 就是因为这个栈结构能够被别人访问到, 而私有的意思是别人看不到。 ——所以, 线程与线程之间没有秘密。 线程的栈上的数据,也是可以被其他线程看到并访问的。 

局部性存储

        我们之前说过, 全局变量是可以被所有线程看到并访问的。但是如果线程想要一个私有的全局变量呢? 那么我们就需要在全局变量前面加一个__thread。 下面用代码来进行验证:

        我们的核心代码还是上面写的代码。

        并且为了方便观察, 将创建线程每隔1000微秒(使用usleep函数)创建一个线程。 然后每隔2秒打印一次数据:

#include<iostream>
using namespace std;
#include<pthread.h>
#include<vector>
#include<unistd.h>

#define NUM 5  //创建多个执行流, NUM为执行流个数

using namespace std;

int* p = nullptr;
__thread int g_val = 0;

//线程的数据信息。 
struct threadData
{
    string threadname;
};

string toHex(pthread_t tid)
{
    char buffer[128];
    snprintf(buffer, sizeof(buffer), "0x%x", tid);

    return buffer;
}

void InitthreadData(threadData* td, int number)
{
    td->threadname = "thread-" + to_string(number);
}

//新线程的执行代码
void* threadRuntine(void* args)
{
    threadData* td = static_cast<threadData*>(args);

    int i = 0;
    while (i < 5)
    {
        cout << "pid: " << getpid() << ", tid: " 
            << toHex(pthread_self()) << ", name: " 
            << td->threadname
            << ", g_val: " << g_val 
             << ", &g_val: " << &g_val << endl;

        i++;

        g_val++;
        sleep(2);
    }
    delete td;
    return nullptr;
}


int main()
{   
    vector<pthread_t> tids;
    //我们创建多个执行流, 为了能够验证每个线程都有一个独立的栈结构
    for (int i = 0; i < NUM; i++)
    {
        threadData* td = new threadData();
        pthread_t tid;
        InitthreadData(td, i);
        pthread_create(&tid, nullptr, threadRuntine, td);
        tids.push_back(tid);
        usleep(1000);
    }
    //
    for (int i = 0; i < tids.size(); i++)
    {
        pthread_join(tids[i], nullptr);
    }
    return 0;
}

        下面是运行结果, 运行结果中g_val都是从0开始, 然后各自加各自的,互不影响。 而且每个g_val的地址也不相同。这里的这个__thread, 叫做编译选项。每一个线程都访问同一个全局变量, 但是在访问的时候, 每一个全局变量对于每一个线程来说, 都是各自私有一份的。 这种技术叫做线程的局部性存储!

       另外, 我们需要知道的一点就是__thread只能修饰内置类型, 不能修饰自定义类型。 

       那么, 这个局部性存储有什么作用呢? 就比如我们的线程要进行多次函数调用并且函数都要用到它,而且又不想和别的线程共享这份资源的时候, 我们就可以使用线程的局部性存储。

        

线程分离

        在我们的默认情况下, 新创建的线程是joinable的, 线程退出后, 需要对其进行pthread_join操作, 否则无法释放资源造成内存泄露。 但是我们可以告诉操作系统, 当进程退出的时候, 不需要主线程等待, 而是自动释放资源, 这个操作就是线程分离。 

        接口如下:

        参数就是线程的tid。 返回值和之前一样,就是成功零被返回, 失败返回错误码。

主线程分离

        然后我们测试一下线程分离, 代码只改变main函数里面的就可以。 主要就是在进行线程等待之前先将线程分离。 然后等待的时候就会等待错误, 返回错误码。同时我们也可以打印一下错误码观察错误信息。


int main()
{   
    vector<pthread_t> tids;
    //我们创建多个执行流, 为了能够验证每个线程都有一个独立的栈结构
    for (int i = 0; i < NUM; i++)
    {
        threadData* td = new threadData();
        pthread_t tid;
        InitthreadData(td, i);
        pthread_create(&tid, nullptr, threadRuntine, td);
        tids.push_back(tid);
        usleep(1000);
    }
    //
    for (auto e : tids)
    {
        pthread_detach(e);
    }

    for (int i = 0; i < tids.size(); i++)
    {
        int n = pthread_join(tids[i], nullptr);
        cout << "n = " << n << ", who: " << toHex(tids[i]) 
           << ", " << strerror(n) << endl;
    }
    return 0;
}

        运行结果如下, 可以发现运行结果如同我们的猜测, 都是返回错误码。 然后我们可以打印一下

自己分离自己 

        上面的情况是在主线程分离新线程。 我们也可以在新线程里面自己分离自己。 

//新线程的执行代码
void* threadRuntine(void* args)
{
    pthread_detach(pthread_self());
    
    //
    threadData* td = static_cast<threadData*>(args);
    
    number = pthread_self();
    int i = 0;
    while (i < 5)
    {
        cout << "pid: " << getpid() << ", tid: " 
            << toHex(number) << ", name: " 
            << td->threadname
            << ", g_val: " << g_val 
             << ", &g_val: " << &g_val << endl;

        i++;

        g_val++;
        sleep(2);
    }
    delete td;
    return nullptr;
}

        然后我们的结果其实和上面的是一样的:

        其实线程的分离, 线程是否分离其实是一种属性状态。 一开始默认线程是不分离的,是joinable的。本质上就是线程库里面的线程数据结构里有一个是否可分离的标记位, 开始默认是joinable的,一旦设置由零变一, 就是线程分离。 而线程分离呢, 说是分离, 但是其实和原本的进程还是在共享一份资源, 只是这个线程处于分离状态, 线程退出和进程没有关系了!

  ——————以上就是本节全部内容哦, 如果对友友们有帮助的话可以关注博主, 方便学习更多知识哦!!!  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/890470.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何用AI两小时上线自己的小程序

ChatGPT这个轰动全球的产品自问世以来&#xff0c;已经过了将近2年的时间&#xff0c;各行各业的精英们如火如荼的将AI能力应用到自己生产的产品中来。 为分担人类的部分工作&#xff0c;AI还具有非常大的想象空间&#xff0c;例如对于一个程序员来说&#xff0c;使用AI生成快…

Redis——持久化

文章目录 Redis持久化Redis的两种持久化的策略定期备份&#xff1a;RDB触发机制rdb的触发时机&#xff1a;手动执行save&bgsave保存测试不手动执行bgsave测试bgsave操作流程测试通过配置&#xff0c;自动生成rdb快照RDB的优缺点 实时备份&#xff1a;AOFAOF是否会影响到red…

Redis:分布式 - 主从复制

Redis&#xff1a;分布式 - 主从复制 概念配置主从模式info replicationslave-read-onlytcp-nodelay 命令slaveof 主从结构一主一从一主多从 主从复制流程数据同步命令全量同步部分同步实时同步 节点晋升 概念 Redis的最佳应用&#xff0c;还是要在分布式系统中。对于非分布式…

前端优化,解决页面加载慢

问题&#xff1a;vue项目使用vite打包后&#xff0c;部署在nginx服务器上&#xff0c;页面上访问时很慢&#xff0c;发现有个js文件很大导致加载很慢 先说结论&#xff1a; 方式时间未优化前21s开启压缩&#xff08;6级&#xff09;6s去掉大依赖&#xff08;flowable&#xf…

YoloV8改进策略:BackBone改进|CAFormer在YoloV8中的创新应用,显著提升目标检测性能

摘要 在目标检测领域,模型性能的提升一直是研究者和开发者们关注的重点。近期,我们尝试将CAFormer模块引入YoloV8模型中,以替换其原有的主干网络,这一创新性的改进带来了显著的性能提升。 CAFormer,作为MetaFormer框架下的一个变体,结合了深度可分离卷积和普通自注意力…

解决海外社媒风控问题的工具——云手机

随着中国企业逐步进入海外市场&#xff0c;海外社交媒体的风控问题严重影响了企业的推广效果与账号运营。这种背景下&#xff0c;云手机作为一种新型技术解决方案&#xff0c;正日益成为企业应对海外社媒风控的重要工具。 由于海外社媒的严格监控&#xff0c;企业经常面临账号流…

【计算机网络 - 基础问题】每日 3 题(三十八)

✍个人博客&#xff1a;https://blog.csdn.net/Newin2020?typeblog &#x1f4e3;专栏地址&#xff1a;http://t.csdnimg.cn/fYaBd &#x1f4da;专栏简介&#xff1a;在这个专栏中&#xff0c;我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话&#xff0c;欢迎点赞…

MongoDB初学者入门教学:与MySQL的对比理解

&#x1f3dd;️ 博主介绍 大家好&#xff0c;我是一个搬砖的农民工&#xff0c;很高兴认识大家 &#x1f60a; ~ &#x1f468;‍&#x1f393; 个人介绍&#xff1a;本人是一名后端Java开发工程师&#xff0c;坐标北京 ~ &#x1f389; 感谢关注 &#x1f4d6; 一起学习 &…

利用弹性盒子完成移动端布局(第二次实验作业)

需要实现的效果如下&#xff1a; 下面是首先是这个项目的框架&#xff1a; 然后是html页面的代码&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"wid…

基于SpringBoot+Vue+uniapp的高校教务管理小程序系统设计和实现

2. 详细视频演示 文章底部名片&#xff0c;联系我获取更详细的演示视频 3. 论文参考 4. 项目运行截图 代码运行&#xff0c;效果展示图 代码运行&#xff0c;效果展示图 代码运行&#xff0c;效果展示图 代码运行&#xff0c;效果展示图 代码运行&#xff0c;效果展示图 5. 技…

深入Semantic Kernel:插件开发与实践应用(进阶篇)

文章目录 一、引言二、开发Semantic Kernel插件三、实战3.1 时间信息插件3.2 小部件工厂插件3.3 初始化Semantic Kernel实例3.4 四个实战示例3.4.1 模型幻觉3.4.2 给模型提供时间信息3.4.3 AI自动调用函数3.4.4 AI自动调用和使用枚举 四、结论 一、引言 在上一篇入门文章《探索…

集成方案 | 借助 Microsoft Copilot for Sales 与 Docusign,加速销售流程!

加速协议信息提取&#xff0c;随时优化邮件内容~ 在当今信息爆炸的时代&#xff0c;销售人员掌握着丰富的数据资源。他们能够通过 CRM 平台、电子邮件、合同库以及其他多种记录系统&#xff0c;随时检索特定个人或组织的关键信息。这些数据对于销售沟通至关重要。然而&#x…

Halcon Blob分析提取小光斑

文章目录 算子complement 返回一个区域的补集select_region_point 选择包含指定像素的所有区域intensity 计算灰度值的均值和偏差 案例 算子 complement 返回一个区域的补集 complement(Region : RegionComplement : : )Region (输入对象)&#xff1a;这指的是输入的一个或多…

AI金融攻防赛:金融场景凭证篡改检测(DataWhale组队学习)

引言 大家好&#xff0c;我是GISer Liu&#x1f601;&#xff0c;一名热爱AI技术的GIS开发者。本系列文章是我跟随DataWhale 2024年10月学习赛的AI金融攻防赛学习总结文档。本文主要讲解如何解决 金融场景凭证篡改检测的核心问题&#xff0c;以及解决思路和代码实现过程。希望…

Zookeeper快速入门:部署服务、基本概念与操作

文章目录 一、部署服务1.下载与安装2.查看并修改配置文件3.启动 二、基本概念与操作1.节点类型特性总结使用场景示例查看节点查看节点数据 2.文件系统层次结构3.watcher 一、部署服务 1.下载与安装 下载&#xff1a; 一定要下载编译后的文件&#xff0c;后缀为bin.tar.gz w…

介绍Java

Java简介 Java是一门由Sun公司&#xff08;现被Oracle收购&#xff09;在1995年开发的计算机编程语言&#xff0c;其主力开发人员是James Gosling&#xff0c;被称为Java之父。Java在被命名为“Java”之前&#xff0c;实际上叫做Oak&#xff0c;这个名字源于James Gosling望向…

非线性激活pytorch

**前置知识&#xff1a; 1、 self.sigmoid1Sigmoid() outputself.sigmoid1(input) 2、常见的非线性激活函数&#xff1a; 3、非线性激活的作用&#xff1a; 线性与非线性 线性函数&#xff1a;假设你用直线去描述波浪的形状。无论你怎么改变直线的斜率&#xff0c;结果都是…

用C++编写信息管理系统(歌单信息管理)

C语言是面向过程的编程语言&#xff0c;而C是面向对象的编程语言&#xff0c;在书写代码时风格有所不同&#xff08;也存在很多共性&#xff09;。 程序说明 本次系统程序使用的是C语言进行编写&#xff0c;主要考虑怎么实现面向对象的问题。 因为本次程序属于小型系统程序&…

react中css样式隔离

使用CSS Modules css模块化 1, 创建组件样式文件时以 xxx.module.css命名, 例如 Home.module.css 代替 Home.css 2, 在组件jsx导入样式文件时使用 import styles from ./xxx.module.css 导入 代替 import ./xxx.css 3, 在组件中需要设置样式的标签上添加class值, classNa…

WebGl学习使用attribute变量绘制一个水平移动的点

在WebGL编程中&#xff0c;attribute变量是一种特殊类型的变量&#xff0c;用于从客户端传递数据到顶点着色器。这些数据通常包括顶点的位置、颜色、纹理坐标等&#xff0c;它们是与每个顶点直接相关的信息。attribute变量在顶点着色器中声明&#xff0c;并且对于每个顶点来说都…